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1. Introduction

The strangeness and charmness contents of the nucleon are interesting aspects of nucleon
structure. Despite the difficulty in measuring these quantities experimentally, thestrangeness of
nucleon still attracts much interest because it is believed to make a large contribution to the cross
section between some dark matter candidates and ordinary matter [1].

The strangeness and charmness of the nucleon can be defined as dimensionless fractions:

fTs = ms〈N|s̄s|N〉
mN

(1.1)

fTc = mc〈N|c̄c|N〉
mN

(1.2)

There are lattice QCD calculations with dynamical fermions by several groups [2, 3, 4, 5, 6]. Two
different methods are used. One is to calculate〈N|q̄q|N〉 = ∂mN

∂mq
from the Feynman-Hellmann

theorem. Another is to calculate the disconnected three-point functions

R(t ′, t, t0) =
< N(t)q̄q(t ′)N̄(t0)>−< N(t)N̄(t0)>< q̄q(t ′)>

< N(t)N̄(t0)>
(1.3)

where ¯qq(t ′) and the nucleon sinkN(t) are zero-momentum operators. We adopt the latter method
to calculate the strangeness and charmness of the nucleon. To extract theform factor from the ratio
of the three-point function and the two-point function, we use a summed ratioto enhance the signal
and suppress excite-state contamination [7]

R′(t, t0) =
t−1

∑
t ′=t0+1

R(t ′, t, t0) (1.4)

and do a linear fit for larget:

R′(t, t0) −→
t≫t0

const.+ t 〈N|s̄s|N〉 (1.5)

2. Strategies for the computation

2.1 Overlap valence fermion on domain-wall sea

The overlap fermion action obeys chiral symmetry at finite lattice spacing and isfree ofO(a)
errors. It is shown that the effective quark propagator of the massive overlap fermion has the same
form as that of the continuum [8]. TheO(m2a2) error, which is important in the charm region, is
estimated to be small on quenched lattices [9, 10] and even smaller on the dynamical domain-wall
sea [11] due to HYP smearing. Thus, it is shown that it can be used for both charm and light quarks
on the 243×64 lattice DWF configurations [12].

We use the valence overlap fermion onN f = 2+ 1 domain wall dynamical configurations
obtained from the RBC and UKQCD collaborations [13]. This is a mixed action approach. Since
the valence is a chiral fermion, only one extra low-energy constant∆mix needs to be determined [14,
15], which turns out to be small [12].
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2.2 The stochastic grid source

We introduceZ3 andZ4 stochastic grid sources to gain more efficiency. A grid source is defined
as

η(~x) = ∑
~i∈G

θiδ~x,~i (2.1)

whereG is a sparse regular grid of lattice sites on time slicet = 0, andθi is the random phase on
site~i. The corresponding quark propagator is

G(~y,η) = D−1(~y,~x)η(~x)

= ∑
~i∈G

θiD
−1(~y,~x)δ~x,~i = ∑

~i∈G

θiG(~y,~i) (2.2)

And the loop on site~i is:

L(~i) = θ †
i G(~i,η)→ G(~i,~i) (2.3)

2.3 The low mode substitution technique for the proton correlation functions

The proton correlation function is

Cproton(~y,~x;Γ;G(u),G(d),G(u′)) = εabcεa′b′c′
[

tr
(

ΓG(u)aa′(~y,~x)G(d)bb′(~y,~x)G(u′)cc′(~y,~x)
)

+tr
(

ΓG(u)aa′(~y,~x)
)

tr
(

G(d)bb′(~y,~x)G(u′)cc′(~y,~x)
)]

(2.4)

where theG(u/d)aa′(~y,~x) is theu/d quark propagator from~x to~y with color indicesa,a′ and theG is
defined [16] as(C̃GC̃−1)T with the charge conjugation operatorC andC̃ =Cγ5 = γ2γ4γ5. The trace
and the transpose operations are defined on Dirac space.

With the masses of theu and thed quarks set to the same value,G(d), G(u), andG(u′) are the
same propagator. The correlation functionC(G1,G2,G3) is a linear function of each of its three
arguments.

With theZ3 grid source, the quark propagator is the sum of the propagators from different sites
on the grid with differentZ3 phases

G = ∑
i∈G

θiGi (2.5)

and the proton correlation function is

C(G,G,G) = C(∑i θiGi,∑ j θ jG j,∑k θkGk)

= ∑i, j,k θiθ jθkC(Gi,G j,Gk)

→ ∑i, j,k δi, j,kC(Gi,G j,Gk)

→ ∑iC(Gi,Gi,Gi) (2.6)

The limit is at that with infinite noise sources or infinite configurations. Otherwise, there is unbiased
contamination by the propagators from different sites.
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With deflation in the quark matrix inversion, we have the propagator with low-mode and high-
mode parts as well:

G = GH +GL

= ∑i θi(GH
i +GL

i )

= GH +∑i θiGL
i (2.7)

and the proton correlation function is

C(G,G,G) = C(GH +∑i θiGL
i ,G

H +∑ j θ jGL
j ,G

H +∑k θkGL
k )

= C(GH ,GH ,GH)+∑iC(θiGL
i ,θiGL

i ,θiGL
i )

+∑iC(θiGL
i ,G

H ,GH)+∑iC(GH ,θiGL
i ,G

H)+∑iC(GH ,GH ,θiGL
i )

+∑iC(θiGL
i ,θiGL

i ,G
H)+∑iC(θiGL

i ,G
H ,θiGL

i )+∑iC(GH ,θiGL
i ,θiGL

i )

+∑i6= j C(θiGL
i ,θ jGL

j ,G
H)+∑i6= j C(θiGL

i ,G
H ,θ jGL

j )+∑i6= j C(GH ,θiGL
i ,θ jGL

j )

+∑i6= j or j 6=k or k 6=iC(θiGL
i ,θ jGL

j ,θkGL
k ) (2.8)

By design, the three quark propagators of the proton should start fromthe same site on the
source grid. In this case, we can drop the terms with∑i6= j and∑i6= j or j 6=k or k 6=i which are all con-
tamination without useful signal. For the pure high mode contribution and mixedGH andGL, this
is implemented by theZ3 noise. For the case with all low modes, we can implement it by hand,
since we have the wavefunctions inGL.

C(G,G,G) = C(GH ,GH ,GH)+∑iC(θiGL
i ,θiGL

i ,θiGL
i )

+∑i G(θiGL
i ,G

H ,GH)+∑i G(GH ,θiGL
i ,G

H)+∑i G(GH ,GH ,θiGL
i )

+∑i G(θiGL
i ,θiGL

i ,G
H)+∑i G(θiGL

i ,G
H ,θiGL

i )+∑i G(GH ,θiGL
i ,θiGL

i )

= G(GH +∑i θiGL
i ,G

H ,GH)

+G(GH ,∑i θiGL
i ,G

H)+G(GH ,GH ,∑i θiGL
i )

+∑i

[

G(θiGL
i ,θiGL

i ,G
H)+G(θiGL

i ,G
H ,θiGL

i )+G(GH ,θiGL
i ,θiGL

i )

+ G(θiGL
i ,θiGL

i ,θiGL
i )
]

(2.9)

With this low mode substitution technique (LMS) [17, 18], the proton correlationfunction
acquires only errors from noises on the high modes and mixedGH andGL. Similarly, one can use
the low mode substitution technique on propagators from smeared sources.The excited states are
significantly suppressed by the smearing technique and the signal-noise ratio is much better.

2.4 The low mode average technique for the loop

We use a similar technique to calculate the loop. To get more statistics, we use the low mode
average technique, wherein we use the low mode loop on all the space-time sites instead of on just
the grid sites.

The loop for the scalar density is well saturated by low modes with light quark masses, but it
is worse in the strange region and does not saturate at all in the charm region.
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Figure 1: The comparison of proton effective masses. The fitting results for proton mass are 1.13(14)GeV
for point source, 1.08(5)GeV for LMS with grid noise source and 1.14(2)GeV for LMS on smeared grid
source with folding.
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Figure 2: The low mode contributions to the loop.

3. Simulation details

We use the overlap valence fermion on the 2+1 flavor domain wall fermion configurations
from RBC. The lattice size is 243×64 with 1/a = 1.73(3) GeV and the sea masses areml = 0.005
andmh = 0.04. We use 37 configurations for the calculation.

We use a double grid source for the nucleon two-point functions. The sources are on the time
slicest = 0 andt = 32 withZ3 noises. The grid cell is(6,6,6) which means there are(24/6)3 = 64
grid sites on one time slice.

We use partial dilution sources for the loop propagator. The time slices are diluted to 4 pieces
and an extra even-odd dilution is adopted. Each diluted piece is a even-oddgrid source withZ4

noises. The grid cell is(4,4,4,2) on 4D space-time which means(24/4)3× (64/2)/2= 3456 grid
sites are inverted simultaneously as sources.

The strangeness withmud = 0.016 (which givesmπ = 330MeV) for the nucleon andms =

0.067 for the strange quark showsfTs = 0.048(15). The contribution from the low modes and the
high modes of the loops arefTs

L = 0.041(12) and fTs
H = 0.003(5), which shows the strangeness is

dominated by the low modes.
The charmness withmc = 0.63 andmud = 0.016 showsfTc = 0.029(43). The contribution
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Figure 3: Left pane: the summed ratio for the strangeness content of nucleon. Right pane: the contribution
from the low modes and the high modes of the loop to the summed ratio for the strangeness content of
nucleon.
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Figure 4: Left pane: the summed ratio for the charmness content of nucleon. Right pane: the contribution
from the low modes and the high modes of the loop to the summed ratio for the charmness content of
nucleon.

from the low modes and the high modes of the loops arefTc
L = 0.042(12) and fTc

H =−0.016(45).
Since we are using the multi-mass algorithm to calculate the propagators, the form factors for

light quarks are calculated simultaneously. With both sea and valencemud = 0.016, the discon-
nected insertion contribution to theπN σ term is 46(19)MeV.

4. Conclusions

The strangeness and the charmness contents of nucleon and theπN σ term are presented.
The low mode substitution and the low mode average techniques are very helpful since the low
modes play an important role for the scalar form factors. For the nucleon valence quark which
corresponds tomπ = 330MeV, we find a three-sigma signal for the strangeness content of the
nucleon, fTs = 0.048(15), but less than a one-sigma signal for the charmness content where the
culprit is the noisy high-frequency modes.

This work is still preliminary with few configurations in one ensemble. We will proceed with
more configurations on both 243×64 and 323×64 lattices with different sea masses. The variation
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Figure 5: The summed ratio for the disconnected insertion contribution toπN σ term.

method can be adopted to reduce the error bars further.
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