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QCD lattice simulations yield hadron masses as functiotiseofluark masses. From the gradients
of the hadron masses the sigma terms can then be determireedonider here dynamical 2+1
flavour simulations, in which we start from a point of the flaveymmetric line and then keep
the singlet or average quark mass fixed as we approach theahgsint. This leads to highly
constrained fits for hadron masses in a multiplet. The gradifthis path for a hadron mass then
gives a relation between the light and strange sigma ternfarther relation can be found from
the change in the singlet quark mass along the flavour syrmunete. This enables light and
strange sigma terms to be estimated for the baryon octet.
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1. Introduction

In this talk we shall describe a method for the determination of the hyperon ségma based
on the results of 1] to which we refer to for more details including numeresilts.

Sigma termsaI(H), GS(H) are defined as that part of the mass of the hadron (for example the
nucleon) coming from the vacuum connected expectation value of thé dpwWn (@) and strange
(s) quark mass terms in the QCD Hamiltonian,

o = nf(H|(@u+dd)H), ol = mB(H|(397IH), (1.1)

where we have taken theandd quarks to be mass degeneratg,= my = m. (The superscript
denotes a renormalised quantity.) Eqg.](1.1) is usually written (in particuldnéomucleon) as

o MRN|(Oudd—259%N) o 2(NI(S9N)

_ d 1.2
1—yNR Y (N|(Qu-+dd)7|N)’ (12)

9

(i.e. we consideyV)? rather thams(N)). The simplest calculation, (which we will discuss in more
detail later) uses first order BU(3) flavour symmetry (octet) breaking to give

(N) nf M=+ Ms — 2My 26

and
(N)R
ol _ ML ~325 Y Mev, (1.4)
nf2 1—y(NR

wherem§/n¥ is the ratio of the strange to light quark masses, which using the leadingRCoe
formula for this ratio givesrg/mft = (2M2 — M2)/M2 ~ 25. The Zweig rule(N|(S97N) ~ O
would then giveaI(N) ~ 26 MeV, aéN) ~ 0MeV while any non-zero strangeness contgtk > 0
would increase this value an‘l('\”, aé'\” (and indeed due to the large coefficiemﬁ',\') quite rapidly).
Computing the sigma terms from lattice QCD has a long history from quencheddeaifl
and more recently 2 1 flavour simulations. In general more recent results tend to give lower
values than earlier determinations.
In this talk, we shall investigate this simple picture as described above andticufa test
the linearity assumption B8U(3) flavour symmetry breaking.

2. Flavour symmetry expansions

Lattice simulations start at some point in tfre§, n¥) plane and then approach the physical
point (m§*, m*) along some path. (In future we shall denote the physical point with As we
shall be considering flavour symmetry breaking then we shall start her@aint on the flavour
symmetric linem® = mf and then consider the path keeping the average quark mass constant,
m = const.. TheSU(3) flavour group (and quark permutation symmetry) then restricts the quark
mass polynomials that are allowed, giving for the baryon octet

M = Mo(TN) +Cy &my +O(31¥), (2.1)
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with cy = 3A1, cp = 3Ay, s = —3A,, C= = —3(A]_ —Az) and

om =m —m, m=3(2m+m). (2.2)
So to linear order in the quark mass, we only have two unknodn#\, (rather than four). A sim-
ilar situation also holds for the pseudoscalar and vector octets (onewnkaad baryon decuplet
(also one unknown). This highly constrains the numerical fits.

Permutation invariant functions of the masség, (or ‘centre of mass’ of the multiplet) have
no linear dependence on the quark mass. For example for the barypwedtave

Xn = (M +Ms 4 Mz) = Mo () + O(8n) (23)

(The corresponding result for the pseudoscalar octet is given lagey. if8.1D).)
Furthermore expanding about a specific fixed paimt= ms = my on the flavour symmetric
line and allowingmto vary, we then have

Mo(M) = Mo(mo) -+ Mp(mo) (M— mp) + O((M—mp)?) . (2.4)

We will see thatA;, A, determine all the non-singlet sigma terms andmy) the singlet sigma
terms.

As an example of the quark mass expansion from a point on the flavour gyimitiree in
Fig.[ we plot the baryon octély /Xy forH =N, A, Z, = againsiV2 /X2 together with a linear fit,
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Figure 1: My /Xy (H =N, A, Z, =) againstM2/X2 for initial point on the flavour symmetric line given by
Ko = 0.12090, left panel ando = 0.12092, right panel. The 32« 64 lattices are filled circles, while the
243 x 48 lattices are open triangles. Also shown is the combineaf . {3.1]L) (the dashed lines) to the
328 x 64 lattice data. The fit results are the open circles, whiteetkperimental points are the (red) stars.

eg. (2.1) and implicitly eq[(3-10) usingt2L O(a) improved clover fermions g = 5.50, using two
starting values for the quark mass on the flavour symmetric line. All the poin&sheen arranged

in the simulation to have constamt We see that a linear fit provides a good description of the
numerical data from the symmetric point (whevig; ~ X;; = 4109 MeV) down to the physical
pion mass.
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3. (Hyperon) o equations

3.1 Renormalisation

For Wilson (clover) fermions under renormalisation the singlet and nagledipieces of the
guark mass renormalise differently. We have
ZNs_ 7S
ZNS
In the action the terny ,mgdq= Y 4mM;(do)" i.e. is a renormalisation group invariant or RGI quan-
tity. Upon writing this in a matrix form and inverting gives

my=2Z"[mg+az3(2m+ms)],  az= (3.1)

1 az

l+O{Z§(UU4—dd4—ss) , (3.2)

()" = s |00

so foraz # 0 then there is always mixing between bare operators. Useful quarkicatioins are
the octet and singlet combinations, namely

(Ou+dd)— 2(s3" = %S ((ou+dd) - 2(ss) (3.3)
(Qu+dd)"+ (59 — zs(11+az) ((au+dd) + (s9) . (3.4)

3.2 o equations

Scalar matrix elements can be determined from the gradient of the hadrorfwiths®spect
to the quark mass) by using the Feynman—Hellman theorem which is true fobd@tland renor-
malised quantities. So if we take the derivative with respect to the bare mes&we get the bare
gg matrix element,

oMy oMy
om omg
Multiplying the renormalised quark mass, eg.(3.1), together with €g3. Br4nére generally

with eq. (3.R)) we can find RGI combinations (i.e. a form where the renorati@lis constanzs
cancels). In particular we find

= (H|(uu+dd)|H), = (H|sqH). (3.5)

H H 3r
ol( ) ool = 1+2r(1+az)mocH (3.6)
(H) (H) 3r /
= = _mM 7
0, +r0s T o(mo), (3.7)

wherer is the ratio of quark masses= nf'/n. The two simultaneous equations, which can be
easily solved, give

(H) r
g = T [(1+ az)mocH + 2moMg(mo) |

M _ 1

S = T [—(1+ az)mocH + moMp(mo)] - (3.8)

1Eq. (3.3) also leads to ed_(f1.3). The RHS of §q] (3.3) can be iteemmscy /ZNS = 3A;/ZMS. Together with
Mz + Mz — 2Mn = —9A10m = 3A;(m — ) /ZNS this gives eq.3). An alternative mass combination that also picks
out theA; coefficient isM=z — Mp = —3A;0m.



Nucleon sigma terms. R. Horsley

We see that the smallnessmﬁ*) in comparison tcvs(H) is certainly guaranteed by the presence of
an additional in its numerator. These coefficients are also sufficient to deteryflifg as can be
seen from eq[(3.8),

yHIR Z 2 —(1+ az)moch +MoMo(mo)
(1+ az)mocy + 2moMj(mp)

(3.9)

It is seen thay")R only depends on gradients and not on the physical point.

It is convenient to normalise the coefficients Xy so we now need to find the coefficients
(14 az)mocH /Xn(mo) andmoMg(mg) /Xn (o) and also to extrapolate to the point where the quark
mass ratio takes its physical value, r.e=r*.

3.3 Determination of the coefficients

The coefficients can be determined by considering gradients with résgeghysical quantity.
As in eqg. [2.]1) we also have a similar expansion for the pseudoscalar octet,

M2 = M2+ 2adm + O(n¥), (3.10)

(together withMZ = Mg, — adm + O(3n¥), Mz = M3, — 4adm + O(3n¥)). Analogously to
eq. (2.B) we can define a flavour singlet quantfy= 1(2M2 + M2) = M3, -+ O(8n¥) However,
as well as eq.[(2]1), we have the additional constraint from P®KC= 2BEn¥® (together with
MZ = BS(mR +ng)). If we now consider an expansion in the pion mass then eliminaiing
between eq[(3.1) and ed. (3.10) gives

M7
7]2[ )

M _ (1_ s+ az)ﬁb;:]) it am]
from the point on the symmetric linep = M. Thus if we plotMy /Xy versusM2/X2 (holding the
singlet quark mass$n constant) then the gradient immediately yie{dst az)mocy /Xn. The only
assumption is that the ‘fan’ plot splittings remain lineadimy down to the physical point. In Fif] 1
we show this plot leading to a results fdr+ az)mycy /Xy for kg = 0.12090, 012092.
Furthermore on the flavour symmetric line eliminatifig— mg) between eqs[(3.4) and the
corresponding one fdvi2(m) gives
Xn(m) ( B [%Mé(rrw]) [moMé(rrb)] XZ(m)
Xn(mo) Xn (o) Xn(mo)  XE(mo)
Again in a plot of Xy (m)/Xn (M) versusX2(m)/X2(my) the gradient immediately gives the re-
quired ratiompM{(mg) /Xn(mo). In Fig. 2 we plotXy (M) /Xn(mp) versusX2(m)/X2(mp). From
eq. (3:IP) the gradient gives the required number.
Finally the quark mass ratio, must be estimated. In the right panel of ilg. 2 we PRIIZ —
M2)/X& versusM?2/X3. From eq. [3.10) we have

XX X
As in section R, we see that for constanthe data points lie on a straight line (i.e. there is an
absence of significant non-linearity). Together with PCAC, this giveses is proportional to

(3.11)

(3.12)

(3.13)
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Figure 2: Left plot:Xy (M) /Xn(mp) versusX2(m)/X2(mp) along the flavour symmetric line, together with
the linear fit from eq.[(3.12); Right plot2MZ —M2) /X3 versusM2/xZ for ko = 0.12090 (left panel) and
Ko = 0.12092 (right panel). The 32« 64 volume results are given by the filled symbols, while th&:248
volume results are shown using empty triangles. The fit ismgivn eq. 3). Experimental points are
denoted by (red) stars.

¥ while they-axis is proportional tarf and thus the ratio gives Taking our physical scale to be
defined fromM2/X3|* (i.e. from thex-axes of Fig[]) gives Ar*.

What can we say about corrections to the linear terms? The simple lineasditiltks the
data well, from the symmetric point to our lightest pion mass, both alongntheconst. line and
the flavour symmetric line. To see the possible influence of curvature wearertipear fits with
quadratic fits as discussed in the Appendix[df [1]. These will be used:tioa§} for the estimate
of possible systematic effects.

4. Results and Conclusions

We can now determingr andcr,(H), o™ The scale is taken ag = 1.1501 GeV. We shall
only discuss here the general details of the results; the numerical vatugisen in [1].

From eq. [(3J6) we can find an indication of the magnitudel%‘f) as approximately
(N) =

(N) = -~ Os
o 224+ 136

MeV > 22.4MeV. (4.1)

The last inequality follows as obvioustys(N)* > 0. Indeed this shows that a non—zerﬁ\‘)* >0
can only add a few MeV to this result.

These results are illustrated in the left plot of Hi. 3 J6¥)* and in the right pIotsaI(H)*,
as(H)* both againsH = N, A, Z and=. While the data foxy = 0.12090 is more complete than
for ko = 0.12092 (cf. the plots in Fig]1) and demonstrates linear behaviour, as thetpethg at
Ko = 0.12092 is closer to the physical point (cf. Fily. 2) we shall use thesewakieur final values.

In conclusion we have found that keeping the average quark massubgses very linear
‘fan’ plots from the flavour symmetric point down to the physical point. Thisliegpthat an
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Figure 3: y(H)R (left plot) anda|<H>* andai)* (right plots) both at the physical point fét = N, A, %, =

expansion in the quark mass from the flavour symmetric point will give infaomaabout the
physical point. In this talk we have applied this to estimating the sigma terms (bothalight
strange) of the nucleon octet. There has been no use of a chiralgzitrexpansion (indeed this
is an opposite expansion to the one used here, expanding about aeka1tass).

Note that expansions about t&&J(3) flavour line require consistency between many QCD
observables, here for example not only for the baryon octet uncdesideration here, but also for
the pseudoscalar octet, and PCAC and the ratio of the light to strangergaask

Of course there are several more avenues to investigate. Our apre@chas been to em-
phasise linearity at the expense (presently) of reaching exactly thécphpsint. This can be
addressed by interpolating between a small set of conBtdinies about the physical point. Ad-
ditionally the use of partial quenching will also help to get closer to the phiysica mass. With
more data, a systematic investigation of quadratic quark mass terms in the #apansion should
be considered, to reduce the systematic errors.
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