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QCD lattice simulations yield hadron masses as functions ofthe quark masses. From the gradients

of the hadron masses the sigma terms can then be determined. We consider here dynamical 2+1

flavour simulations, in which we start from a point of the flavour symmetric line and then keep

the singlet or average quark mass fixed as we approach the physical point. This leads to highly

constrained fits for hadron masses in a multiplet. The gradient of this path for a hadron mass then

gives a relation between the light and strange sigma terms. Afurther relation can be found from

the change in the singlet quark mass along the flavour symmetric line. This enables light and

strange sigma terms to be estimated for the baryon octet.
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Nucleon sigma terms. . . R. Horsley

1. Introduction

In this talk we shall describe a method for the determination of the hyperon sigmaterms based
on the results of [1] to which we refer to for more details including numerical results.

Sigma terms,σ (H)
l , σ (H)

s are defined as that part of the mass of the hadron (for example the
nucleon) coming from the vacuum connected expectation value of the up (u) down (d) and strange
(s) quark mass terms in the QCD Hamiltonian,

σ (H)
l = mR

l 〈H|(uu+dd)R|H〉 , σ (H)
s = mR

s〈H|(ss)R|H〉 , (1.1)

where we have taken theu andd quarks to be mass degenerate,mu = md ≡ ml . (The superscriptR

denotes a renormalised quantity.) Eq. (1.1) is usually written (in particular forthe nucleon) as

σ (N)
l =

mR
l 〈N|(uu+dd−2ss)R|N〉

1−y(N)R
, y(N)R =

2〈N|(ss)R|N〉

〈N|(uu+dd)R|N〉
, (1.2)

(i.e. we considery(N)R rather thanσ (N)
s ). The simplest calculation, (which we will discuss in more

detail later) uses first order inSU(3) flavour symmetry (octet) breaking to give

σ (N)
l =

mR
l

mR
s−mR

l

MΞ +MΣ −2MN

1−y(N)R
∼

26

1−y(N)R
MeV , (1.3)

and

σ (N)
s =

mR
s

mR
l

1
2

y(N)Rσ (N)
l ∼ 325

y(N)R

1−y(N)R
MeV , (1.4)

wheremR
s/mR

l is the ratio of the strange to light quark masses, which using the leading orderPCAC
formula for this ratio givesmR

s/mR
l = (2M2

K −M2
π)/M2

π ∼ 25. The Zweig rule,〈N|(ss)R|N〉 ∼ 0

would then giveσ (N)
l ∼ 26MeV,σ (N)

s ∼ 0MeV while any non-zero strangeness content,y(N)R > 0

would increase this value ofσ (N)
l , σ (N)

s (and indeed due to the large coefficient,σ (N)
s quite rapidly).

Computing the sigma terms from lattice QCD has a long history from quenched to 2 flavour
and more recently 2+ 1 flavour simulations. In general more recent results tend to give lower
values than earlier determinations.

In this talk, we shall investigate this simple picture as described above and in particular test
the linearity assumption ofSU(3) flavour symmetry breaking.

2. Flavour symmetry expansions

Lattice simulations start at some point in the(mR
s,m

R
l ) plane and then approach the physical

point (mR∗
s ,mR∗

l ) along some path. (In future we shall denote the physical point with a∗.) As we
shall be considering flavour symmetry breaking then we shall start here at a point on the flavour
symmetric linemR

l = mR
s and then consider the path keeping the average quark mass constant,

m= const.. TheSU(3) flavour group (and quark permutation symmetry) then restricts the quark
mass polynomials that are allowed, giving for the baryon octet

MH = M0(m)+cHδml +O(δm2
l ) , (2.1)
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with cN = 3A1, cΛ = 3A2, cΣ =−3A2, cΞ =−3(A1−A2) and

δml = ml −m, m= 1
3(2ml +ms) . (2.2)

So to linear order in the quark mass, we only have two unknowns,A1, A2 (rather than four). A sim-
ilar situation also holds for the pseudoscalar and vector octets (one unknown) and baryon decuplet
(also one unknown). This highly constrains the numerical fits.

Permutation invariant functions of the masses,XS, (or ‘centre of mass’ of the multiplet) have
no linear dependence on the quark mass. For example for the baryon octet we have

XN = 1
3(MN +MΣ +MΞ) = M0(m)+O(δm2

l ) . (2.3)

(The corresponding result for the pseudoscalar octet is given later ineq. (3.10).)

Furthermore expanding about a specific fixed point,ml = ms = m0 on the flavour symmetric
line and allowingm to vary, we then have

M0(m) = M0(m0)+M′
0(m0)(m−m0)+O((m−m0)

2) . (2.4)

We will see thatA1, A2 determine all the non-singlet sigma terms andM′(m0) the singlet sigma
terms.

As an example of the quark mass expansion from a point on the flavour symmetric line in
Fig. 1 we plot the baryon octetMH/XN for H = N, Λ, Σ, Ξ againstM2

π/X2
π together with a linear fit,
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Figure 1: MH/XN (H = N, Λ, Σ, Ξ) againstM2
π/X2

π for initial point on the flavour symmetric line given by
κ0 = 0.12090, left panel andκ0 = 0.12092, right panel. The 323×64 lattices are filled circles, while the
243×48 lattices are open triangles. Also shown is the combined fitof eq. (3.11) (the dashed lines) to the
323×64 lattice data. The fit results are the open circles, while the experimental points are the (red) stars.

eq. (2.1) and implicitly eq. (3.10) using 2+1 O(a) improved clover fermions atβ = 5.50, using two
starting values for the quark mass on the flavour symmetric line. All the points have been arranged
in the simulation to have constantm. We see that a linear fit provides a good description of the
numerical data from the symmetric point (whereMπ ∼ X∗

π = 410.9MeV) down to the physical
pion mass.
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3. (Hyperon) σ equations

3.1 Renormalisation

For Wilson (clover) fermions under renormalisation the singlet and non-singlet pieces of the
quark mass renormalise differently. We have

mR
q = ZNS

[

mq+αZ
1
3(2ml +ms)

]

, αZ =
ZNS−ZS

ZNS
. (3.1)

In the action the term∑qmqqq= ∑qmR
q(qq)R i.e. is a renormalisation group invariant or RGI quan-

tity. Upon writing this in a matrix form and inverting gives

(qq)R =
1

ZNS

[

qq−
αZ

1+αZ

1
3(uu+dd+ss)

]

, (3.2)

so forαZ 6= 0 then there is always mixing between bare operators. Useful quark combinations are
the octet1 and singlet combinations, namely

(uu+dd)R−2(ss)R =
1

ZNS

(

(uu+dd)−2(ss)
)

(3.3)

(uu+dd)R+(ss)R =
1

ZNS(1+αZ)

(

(uu+dd)+(ss)
)

. (3.4)

3.2 σ equations

Scalar matrix elements can be determined from the gradient of the hadron mass(with respect
to the quark mass) by using the Feynman–Hellman theorem which is true for bothbare and renor-
malised quantities. So if we take the derivative with respect to the bare quarkmass we get the bare
qqmatrix element,

∂MH

∂ml
= 〈H|(uu+dd)|H〉 ,

∂MH

∂ms
= 〈H|ss|H〉 . (3.5)

Multiplying the renormalised quark mass, eq. (3.1), together with eqs. (3.4) (or more generally
with eq. (3.2)) we can find RGI combinations (i.e. a form where the renormalisation constantZNS

cancels). In particular we find

σ (H)
l −2rσ (H)

s =
3r

1+2r
(1+αZ)m0cH (3.6)

σ (H)
l + rσ (H)

s =
3r

1+2r
m0M′

0(m0) , (3.7)

wherer is the ratio of quark massesr ≡ mR
l /mR

s. The two simultaneous equations, which can be
easily solved, give

σ (H)
l =

r
1+2r

[

(1+αZ)m0cH +2m0M′
0(m0)

]

σ (H)
s =

1
1+2r

[

−(1+αZ)m0cH +m0M′
0(m0)

]

. (3.8)

1Eq. (3.3) also leads to eq. (1.3). The RHS of eq. (3.3) can be re-written ascN/ZNS = 3A1/ZNS. Together with
MΞ +MΣ −2MN =−9A1δml = 3A1(mR

s −mR
l )/ZNS this gives eq. (1.3). An alternative mass combination that also picks

out theA1 coefficient isMΞ −MΛ =−3A1δml .
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We see that the smallness ofσ (H)
l in comparison toσ (H)

s is certainly guaranteed by the presence of
an additionalr in its numerator. These coefficients are also sufficient to determiney(H)R, as can be
seen from eq. (3.8),

y(H)R = 2
−(1+αZ)m0cH +m0M′

0(m0)

(1+αZ)m0cH +2m0M′
0(m0)

. (3.9)

It is seen thaty(H)R only depends on gradients and not on the physical point.
It is convenient to normalise the coefficients byXN so we now need to find the coefficients

(1+αZ)m0cH/XN(m0) andm0M′
0(m0)/XN(m0) and also to extrapolate to the point where the quark

mass ratio takes its physical value, i.e.r = r∗.

3.3 Determination of the coefficients

The coefficients can be determined by considering gradients with respectto a physical quantity.
As in eq. (2.1) we also have a similar expansion for the pseudoscalar octet,

M2
π = M2

0π +2αδml +O(δm2
l ) , (3.10)

(together withM2
K = M2

0π −αδml +O(δm2
l ), M2

ηs
= M2

0π − 4αδml +O(δm2
l )). Analogously to

eq. (2.3) we can define a flavour singlet quantityX2
π = 1

3(2M2
K +M2

π) = M2
0π +O(δm2

l ) However,
as well as eq. (2.1), we have the additional constraint from PCACM2

π = 2BR
0mR

l (together with
M2

K = BR
0(m

R
l +mR

s)). If we now consider an expansion in the pion mass then eliminatingδml

between eq. (2.1) and eq. (3.10) gives

MH

XN
=

(

1− [(1+αZ)m0
cH

XN
]

)

+[(1+αZ)m0
cH

XN
]
M2

π
X2

π
, (3.11)

from the point on the symmetric linem0 = m. Thus if we plotMH/XN versusM2
π/X2

π (holding the
singlet quark mass,m constant) then the gradient immediately yields(1+αZ)m0cH/XN. The only
assumption is that the ‘fan’ plot splittings remain linear inδml down to the physical point. In Fig. 1
we show this plot leading to a results for(1+αZ)m0cH/XN for κ0 = 0.12090, 0.12092.

Furthermore on the flavour symmetric line eliminating(m−m0) between eqs. (2.4) and the
corresponding one forM2

π(m) gives

XN(m)

XN(m0)
=

(

1− [
m0M′

0(m0)

XN(m0)
]

)

+[
m0M′

0(m0)

XN(m0)
]

X2
π (m)

X2
π (m0)

. (3.12)

Again in a plot ofXN(m)/XN(m0) versusX2
π (m)/X2

π (m0) the gradient immediately gives the re-
quired ratiom0M′

0(m0)/XN(m0). In Fig. 2 we plotXN(m)/XN(m0) versusX2
π (m)/X2

π (m0). From
eq. (3.12) the gradient gives the required number.

Finally the quark mass ratio,r, must be estimated. In the right panel of Fig. 2 we plot(2M2
K −

M2
π)/X2

N versusM2
π/X2

N. From eq. (3.10) we have

2M2
K −M2

π
X2

N

= 3
M2

0π
X2

N

−2
M2

π
X2

N

. (3.13)

As in section 2, we see that for constantm the data points lie on a straight line (i.e. there is an
absence of significant non-linearity). Together with PCAC, this gives thex-axis is proportional to

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
1
5
8

Nucleon sigma terms. . . R. Horsley

0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10
Xπ

2
(m)/Xπ

2
(m0)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

X
N
(

m
)/

X
N
(m

0
)

0.00 0.05 0.10 0.15
Mπ

2
/XN

2

0.0

0.1

0.2

0.3

0.4

(2
M

K

2 −
M

π2 )/
X

N

2

κ0=0.12090, 24
3
x48

κ0=0.12090, 32
3
x64

0.00 0.05 0.10 0.15
Mπ

2
/XN

2

κ0=0.120920, 24
3
x48

κ0=0.120920, 32
3
x64

Figure 2: Left plot:XN(m)/XN(m0) versusX2
π (m)/X2

π (m0) along the flavour symmetric line, together with
the linear fit from eq. (3.12); Right plot:(2M2

K −M2
π)/X2

N versusM2
π/X2

N for κ0 = 0.12090 (left panel) and
κ0 = 0.12092 (right panel). The 323×64 volume results are given by the filled symbols, while the 243×48
volume results are shown using empty triangles. The fit is given in eq. (3.13). Experimental points are
denoted by (red) stars.

mR
l while they-axis is proportional tomR

s and thus the ratio givesr. Taking our physical scale to be
defined fromM2

π/X2
N|

∗ (i.e. from thex-axes of Fig. 2) gives 1/r∗.
What can we say about corrections to the linear terms? The simple linear fit describes the

data well, from the symmetric point to our lightest pion mass, both along them= const. line and
the flavour symmetric line. To see the possible influence of curvature we compare linear fits with
quadratic fits as discussed in the Appendix of [1]. These will be used in section 4 for the estimate
of possible systematic effects.

4. Results and Conclusions

We can now determiney(H)R andσ (H)
l , σ (H)

s . The scale is taken asXN = 1.1501GeV. We shall
only discuss here the general details of the results; the numerical values are given in [1].

From eq. (3.6) we can find an indication of the magnitude ofσ (N)
l as approximately

σ (N)∗
l ∼ 22.4+

σ (N)∗
s

13.6
MeV ∼> 22.4MeV. (4.1)

The last inequality follows as obviouslyσ (N)∗
s > 0. Indeed this shows that a non-zeroσ (N)∗

s > 0
can only add a few MeV to this result.

These results are illustrated in the left plot of Fig. 3 fory(H)R∗ and in the right plotsσ (H)∗
l ,

σ (H)∗
s both againstH = N, Λ, Σ andΞ. While the data forκ0 = 0.12090 is more complete than

for κ0 = 0.12092 (cf. the plots in Fig. 1) and demonstrates linear behaviour, as the pathstarting at
κ0 = 0.12092 is closer to the physical point (cf. Fig. 2) we shall use these values as our final values.

In conclusion we have found that keeping the average quark mass constant gives very linear
‘fan’ plots from the flavour symmetric point down to the physical point. This implies that an

6
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Figure 3: y(H)R∗ (left plot) andσ (H)∗
l andσ (H)∗

s (right plots) both at the physical point forH = N, Λ, Σ, Ξ

expansion in the quark mass from the flavour symmetric point will give information about the
physical point. In this talk we have applied this to estimating the sigma terms (both lightand
strange) of the nucleon octet. There has been no use of a chiral perturbation expansion (indeed this
is an opposite expansion to the one used here, expanding about zero quark mass).

Note that expansions about theSU(3) flavour line require consistency between many QCD
observables, here for example not only for the baryon octet under consideration here, but also for
the pseudoscalar octet, and PCAC and the ratio of the light to strange quarkmass.

Of course there are several more avenues to investigate. Our approach here has been to em-
phasise linearity at the expense (presently) of reaching exactly the physical point. This can be
addressed by interpolating between a small set of constantm lines about the physical point. Ad-
ditionally the use of partial quenching will also help to get closer to the physical pion mass. With
more data, a systematic investigation of quadratic quark mass terms in the flavourexpansion should
be considered, to reduce the systematic errors.
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