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1. Introduction

The anomalous magnetic moment of the muon is defined as half the differemesehethe
gyromagnetic factor of the muay), and 2:a, = (g, — 2)/2. This quantity is commonly used to
test the Standard Model of particle physics, since it can be measuresbammited to a very high
precision. Currently a discrepancy of23standard deviations between experiment and theory is
observed [1], which might be a hint for physics beyond the StandamieMdhe hadronic contri-
butions, especially the hadronic vacuum poIarisa&iﬁH‘P, dominate the theoretical uncertainties.
Currently the Standard Model predictionaﬂ'—O is determined using the optical theorem to relate
the cross-sectioae~ — hadronsdata to the vacuum polarisation. A calculation from first prin-
ciples is clearly desirable. Here we report on our current effortitdgva precise determination of
the leading hadronic contribution to the anomalous magnetic moment of the mugnLasiite
QCD.

2. Lattice Setup

B alfm] lattice L [fm] my[MeV] myL Labels
520 0079 64x32 25 471-317 @-40 A3-A5
530 0063 64x32 20 644-447 MW-47 E3-E5
530 0063 96x48 30 323,277 9,42 F6,F7
550 0050 96x48 24 541,431 &,52 N4,N5

Table 1: Summary of simulations parameters. Measurements arerpexfbon configurations separated
by 8 units of molecular dynamics time at least. The scale aol masses are still preliminary and taken
from [10,11].

We use two dynamical flavours of non-perturbativélga) improved Wilson fermions [2] and
include a partially quenched strange quark. Similar studies have beemmed in the quenched
approximation [3,4] and in the theory with two [5,6] and three dynamical fles/¢u,8]. Our
measurements are performed on a subset of the gauge configuratienatgd as part of the CLS
project [9]. The simulations parameters are listed in Table 1. On the lattice¢hamegpolarisation
tensor is defined by a Fourier-transformation of a current-currenglemor

Muv() =a*y earan/z-av/2) (32 35(0)) (2.1)
X
where we use the conserved point-split curdﬁrﬁk) [4] given in the case of Wilson fermions by
1/_ N _ N
3500 = 5 (T ) (-4 YU (09900 - A0 )Rl ). (22)
Preforming the Wick contractions in Equation 2.1 produces connected lagasvdisconnected
contributions. Disconnected diagrams are computationally expensiveegihetted in this study.

Nevertheless two-flavour chiral perturbation theory of NLO allows ustiorate the disconnected
contributions to be-10% of the connected one [12].
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Current conservation implies that the vacuum polarisation tefigp(q) can be related to the
vacuum polarisatiofil (¢?) in the following way:

My () = (5uvq2 - QuQV) n(qz)- (2.3)

For space-like momenta, the relation between the vacuum polarigatagn and the lowest order
hadronic contribution to the anomalous magnetic moment of the rag% has been derived in
[3,4,13]

2= ()" [Ca @, 24

T
where the kernel of this integral is given by

() MPZA-gz) @y A -

andﬁ(qz) = 4n(l'l(q2) — I'I(O)). We have implemented patrtially twisted boundary conditions [14]
q(x+Lk) = €%q(x), (2.6)

which allow us to access any value of the momem%ﬁﬁ— % wheren is a vector of integers.

In this way we are able to improve the sampling with data points, in particular thenkiizal
regiong? < (ZT’T)2 where the kernel of the integral in Equation 2.4 is peaked. Partially twisted
boundary conditions can be applied to the connected diagram by regttegpthe correlator as
flavour non-diagonal (see [15]).

3. Determination of aZ'LO

In order to determine the leading order hadronic contributioateia the integral in Equa-
tion 2.4, we need a continuous description of the vacuum polaris@tigf). Therefore we perform
correlated least square fits to our simulation data. Perturbation theory irglddan) terms [16]
is incorporated into the fitting procedure to constrain the fit at large momengutarnanding that
the fit-function and perturbation theory are matched at some high momentumsiiceea smooth
function, we also imply a matching of the first derivative at the same point.prbiedure reduces
the number of free fit coefficients by two. To evaluate the perturbatirdta we use the non-
perturbative, two-flavour Lambda-parametgs parameter from [17] and the non-perturbative
renormalization factors in [18,19,20]. We study systematic effects intratdoig¢he choice of the
fit procedure, by varying the fit ansatz and the matching point of pextioribtheory. We chose 4
different fit-anséatze and checked for systematic differences:

a) a model independent Padé with degree 2 over degree 3

a(g?+b%) (P +c2)

N(g?) = 3.1

= A @ 1) G4
b) vector dominance model including a single vector
b

MN?) =a+ —— 3.2

(a°) +(q2+c2)’ (3.2)
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¢) vector dominance model with two vectors and one mass fixeg tas proposed in [7,8]

Ng?) =a+ + , 3.3
D=2 e Erm) &9
d) vector dominance model with two free vector masses
N(g) =a 3.4
(@) =a+ oy (3.4)
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Figure 1: Left: The subtracted vacuum polarisatiﬁt(qz) computed on the F6 ensemblg £ 5.3;
L = 3.0fm; my = 323MeV) using twisted and periodic boundary conditionse Btue solid line shows
the fit to the double vector ansatz ¢) matched to perturbdltieary (light blue line).Right: The different
contributions taaﬂ'—o from the dispersion integral broken down to several monmamanges, shown in both
figures indicated by different colours.

The fits, except the vector dominance model fit, turn out to give consighdurs within the
statistical uncertainties, when the matching point of perturbation theory seoharger tham:
1GeV. In Figure 1 we show the subtracted vacuum polarisation togethertheitperturbation
theory and fit ¢) (i.e. double vector). The effect of twisting is illustrategbgwing periodic and
twisted data in the same plot, which demonstrate a clear improvement on the momeslution
of ﬁ(qz). The remaining integration of Equation 2.4 is performed numerically. The pigihel of
Figure 1 shows the individual contributions agLO separated into different momentum regions.
Part | shows the area for O t@ in which no data points occur. Nevertheless this small momentum
range is constrained by the condition tllfta(nz) — 0 for g — 0 and the smooth behaviour of the
fit curve. The second momentum range (ll) displays the region in whichetvidata points begin
to contribute. In the third region (l1l) periodic and twisted data points giperdect description of
the momentum behaviour. The final section (IV) shows the contribution ferurbation theory,
which turns out to be negligible. The overall statistical error, estimated vimtstrap procedure,
is dominated by regions | and Il and ranges from 2% to 7% for the diffenesembles.
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4. Results

In Figure 2 we show the result f@{-© computed for the ensembles listed in Table 1 as a
function of m2. We observe a clear curvature and steep rise for small pion masseistaiioad-°
at the physical point we need to perform a chiral extrapolation. In additi@ linear behaviour in
me, we also include a logarithmic term, which is motivated by chiral perturbationgheor

afi*°(m7) = all"° + Bny+Cnt log(n). (4.1)
We restrict the fit to the four most chirll= 5.3 data only to avoid mixing of cutoff effects and the
chiral extrapolation.
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Figure 2: Left: The simulation results for the hadronic contributionajp computed using two flavours,
shown as function of?. The chiral extrapolation (blue curve) is performed usingaasatz motivated by
chiral perturbation theoryRight: Corresponding results fa}- including a partially quenched strange
quark.

We find that this extrapolation describes the whole set of data points quiteevezil those
which not included in the fit. If we use this extrapolation, we obtainafgi*rO in the two-flavour
case

all"®(Nf = 2) = 537.1(53.8)stat(37.6)chirar- 10 *°. (4.2)
For the case of an additional quenched strange quark we end up with
all'O(Nf = 2+ 1) = 6124(49.9)stat(48.5)chirar- 10~ 1°. (4.3)

We repeat the analysis using a linear extrapolation for the 3 most ghirdh.3 data points to
estimate the uncertainties from the chiral extrapolation by using half theatfferof the central
values.

Since finite size effects and cutoff effects rather depend?it is more instructive to study
them using the subtracted vacuum polarisafifa?) thanal!-C. The left panel of Figure 3 shows
the quantityT (¢?) for two different ensembles which have roughly the same pion mass andeolu
This allows us to look for cutoff effects, which turn out to be below 3% in thermmotum range
o? < 1Ge\2. The right panel of Figure 3 offers an insight to finite size effects andfteffects,
showing two ensemble which differ in volume and lattice spacing. It turns atithiese two effects
are around 5% and within our statistical precision.
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Figure 3: Left: A study of cutoff effects comparing the subtracted vacuutaneation for two ensemble
with roughly the same pion mass; ~ 450MeV and volumé. = 2.5fm. Right: A comparison of 1(¢?)
for two ensemble with the same pion mags= 320MeV.

5. Conclusions and Outlook

The determination O&l']”‘o using Lattice QCD is feasible, but still requires further improve-
ments to make an impact on phenomenology. Partially twisted boundary condititersl the
accessible momentum range for the vacuum polarisation and thereby théwstatistical and sys-
tematic uncertainties. At present the individual data pointsaﬂbp have statistical precision of
2% to 7%. Summing up all individual uncertainties in quadrature we end up witiverall uncer-
tainty of =~ 12% for the extrapolated value at the physical point. Our study of rdssglatematics
indicate that finite size effects and cutoff effects chaaﬁé’ slightly. The value will in any case
decrease after the inclusion of the disconnected diagrams. Further détailsstudy will be pub-
lished soon [21]. In the future we will study ensembles with smaller pion massegrove the
extrapolation to the physical point and reduce the systematics, such asifieitffects and cutoff
effects. Once we are confident that we can control these effects tedbeed level of accuracy,
we will include a dynamical strange and charm quarks into our calculations.
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