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1. Introduction

The anomalous magnetic moment a of a lepton is a measure of the quantum contributions to
the lepton-photon interaction. The result for the muon, aµ comprises significant contributions from
most sectors of the Standard Model and as such the effort to produce a precise computation of the
theoretical prediction for aµ has proven a significant challenge. This fact, along with the success
of experiments in determining the physical value of aµ to extraordinary precision makes aµ a
very important quantity. Further, the current discrepancy between the experimental and theoretical
Standard Model values is playing a significant role in shaping the debate over candidate models for
BSM physics.

The current uncertainty in aµ is strongly dominated by hadronic contributions. This work
involves the leading order hadronic contribution, which we denote as a(2)had

µ , the best estimate of
which is currently obtained by relating the hadronic vacuum polarisation of the photon to the cross
section for e+e− decay into hadrons, allowing a dispersive integral over experimental data for the
cross section [2]. Despite the apparent accuracy of the results obtained from this procedure, there
remain discrepancies between results from different data sets. It would be preferable to obtain the
hadronic contribution to aµ from a first principles approach. For this the only valid candidate is
lattice QCD which alone is capable of producing quantitative results from fully non-perturbative
QCD.

This quantity was first tackled through lattice computation in quenched simulations first with
domain wall fermions [3] , followed by a calculation with improved Wilson fermions [4]. The
first dynamical simulation followed [5, 6] using 2+1 flavour staggered quarks, and several studies
of this quantity are ongoing, using 2 flavours of improved Wilson fermions [7] and twisted mass
fermions [8]. We present a calculation of a(2)had

µ from a dynamical simulation of 2+1 flavour QCD
with domain wall fermions.

As described in [3] the expression for the hadronic vacuum polarisation contribution to amµ

can be expressed

a(2)had
µ =

(
α

π

)2 ∫ ∞

0
dQ2 f (Q2)× Π̂(Q2) (1.1)

where Π̂(Q2) is the infra-red subtracted transverse part of the hadronic vacuum polarisation

Π̂(Q2) = Π(Q2)−Π(0) Πµν(q) = (q2gµν −qµqν)Π(q2) (1.2)

The hadronic vacuum polarisation function Πµν(q) can be computed as the Fourier-transformed
two-point correlator

Πµν(q) =
∫

d4xeiq·(x−y)〈Jµ(x)Jν(y)〉 (1.3)

involving the electromagnetic current Jµ(x) = ∑i Qiψ̄
iγµψ i where ψ i is the quark field of flavour

i and Qi is its charge. The path-integral used in the expectation value in (1.3) will involve only
hadronic fields, i.e. quarks and gluons.

2. Simulation

Our computation is performed using configurations generated by the RBC & UKQCD collab-
orations as part of their program of investigation using 2+1 flavours of domain-wall fermions. We
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investigate three lattice volumes, each with several ensembles at different values of the light quark
mass mu. The parameters of these ensembles are given in Table 1. The ensembles at β = 1.75
have been generated using a dislocation suppressing determinant ratio (DSDR) in conjunction with
the Iwasaki gauge action, with a fifth dimension whose extent is L5=32 [9, 10]. The lighter of
these ensembles is very near to the physical point with a pion mass of mπ ' 180 MeV. The other
ensembles used only the Iwasaki action and L5 = 16 [11, 12].

V β a−1 GeV q̂2
min GeV2 amh amu

243×64 2.13 1.73(2) 0.028 0.04 0.02
243×64 2.13 1.73(2) 0.028 0.04 0.01
243×64 2.13 1.73(2) 0.028 0.04 0.005
323×64 2.25 2.28(3) 0.05 0.03 0.008
323×64 2.25 2.28(3) 0.05 0.03 0.006
323×64 2.25 2.28(3) 0.05 0.03 0.004
323×64 1.75 1.375(9) 0.018 0.045 0.0042
323×64 1.75 1.375(9) 0.018 0.045 0.001

Table 1: Parameters of the lattice ensembles used in our study.

2.1 Vacuum polarisation

We compute the lattice vacuum polarisation as

Π̃µν(q̂)≡ ZV ∑
i

Q2
i ∑

x
eiqxa6〈V i

µ(x)V
i
ν(0)〉. (2.1)

where we have omitted the flavour-nondiagonal terms as they contain only “disconnected” contri-
butions which are expected to be sub-dominant, as will be discussed further below.

At the sink we use the DWF conserved vector current [13]

V i
µ(x) =

L5

∑
s=1

1
2
[
ψ̄

i(x+ µ̂,s)(1+ γµ)U†
µ(x)ψ

i(x,s)− ψ̄
i(x,s)(1− γµ)Uµ(x)ψ i(x+ µ̂,s)

]
(2.2)

while at the source we have the local vector current V i
ν(x)= q̄i(x)γνqi(x) where qi(x)=P+ψ i(x,L5−

1)+P−ψ i(x,0), and P± = 1
2(1± γ5). Because of the use of the local vector current, a factor of the

vector current renormalisation constant, ZV , is included in our definition of the vacuum polarisa-
tion.

Of the two Wick-contractions arising from this correlator, we compute only the connected
one. We leave the evaluation of the disconnected contribution for future work, but note that it
is expected to be suppressed relative to the connected contribution [14]. This argument is also
the motivation for neglecting the flavour-nondiagonal terms, and we will make an estimate of the
systematic uncertainty that results in our conclusions.

3. Deducing a(2)had
µ

In order to infer the value of a(2)had
µ from our data we must carry out the integral (1.1) which

we split into high and low momentum regions at some momentum cut Q2
C
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a(2)had
µ = 4α

2

[∫ Q2
C

0
dQ2 f (Q2)× Π̂(Q2)+

∫
∞

Q2
C

dQ2 f (Q2)× Π̂(Q2)

]
. (3.1)

A continuous description of Π(Q2) at low momenta is obtained by performing a fit to our lat-
tice data, which allows us to perform the low Q2 integral. The value of Π(0) from this fit combined
with a high-momentum description of Π(Q2) from perturbation theory allows us to perform the
high momentum integral. As we shall see, the integral is strongly dominated by the low momen-
tum contribution.

3.1 Fitting the low Q2 region

We have attempted to fit a continuous form to our lattice data for the vacuum polarisation
using a number of different fit forms. The effect that the choice of fit function can have on the
result for a(2)had

µ has been highlighted in previous studies [6], and this behoves us to ensure that
the systematics with regard to this choice are under control. Ref. [6] also illustrated the use of a
fit form originating in the expression for the vacuum polarisation calculated in chiral perturbation
theory. The dominant component of this expression is due to the vector meson contribution.

Motivated by this expression the fit-form we use is closely related, differing only in the inclu-
sion of the contribution of an additional vector resonance,

Π(Q2) = A− F2
1

Q2 +m2
1
− F2

2

Q2 +m2
2
. (3.2)

We fit the lattice vacuum-polarisation data in two ways: firstly using A, F1,2 and m1,2 as free
parameters, and also by fixing the parameter m1 to the mass of the vector meson mV as measured
in [12]. This we do by constraining m1 to lie in the one-sigma band defined by the estimate of mV

and its variance.
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(a) Properties of fits to the lattice vacuum polarisation.
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(b) Value of the fit parameter am1.

Figure 1: Properties of fits to the lattice vacuum polarisation using the ansatz (3.2) on the β = 2.25 lattice
at amu = 0.004

The behaviour of such fits is shown in Fig. 1a. Clearly such a form is a very good represen-
tation of the data, over practically the whole range of Q2

C. In addition the results for a(2)had
µ using
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such fits are very stable as the fit range is varied, allowing far greater confidence in the reliability
of the result. In particular we conclude that using a fit form (3.2) with the mass of the first pole
fixed to the ground-state vector meson mass to be the optimal method of describing the lattice data
for the hadronic vacuum polarisation.

In Fig. 1b we see the value of the fit parameter m1 from (3.2) as determined from fits to the
lattice vacuum polarisation. The value of mV obtained in [12] is shown in green, and this defines
the band in which m1 was constrained to reside in the fixed version of this fit.

4. Results

We extract our final results from the fit using (3.2) with the first mass fixed to that of the vector
meson as measured on each ensemble. Observing the behaviour of the reduced χ2 as the fit range
is varied, we choose a suitable value for Q2

C for each ensemble which provides the most reliable
result. We attempt to choose a cut which provides a low reduced χ2 preferably where the parameter
m1 agrees without tension with mV.

These results are also shown as a function of m2
π in Fig. 2a, where we compare them to pre-

vious 2+1 flavour results from [6]. Also shown is an extrapolation to the physical point, using a
quadratic chiral ansatz. This produces a final result for the leading order hadronic vacuum polari-
sation contribution the anomalous magnetic moment of the muon

a(2)had
µ = 641(33)×10−10. (4.1)
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(a) Results using unmodified prescription, H = 1.
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(b) Results using modified prescription H = mV .

Figure 2: Integrated result for a(2)had
µ as a function of the pseudoscalar mass squared.

We have also investigated the effect of modifying the kernel function in the integrand (1.1)
in the manner outlined in [8], where in an effort to moderate the variation of the outcome of the
integral as a function of the quark mass, the momentum argument of the kernel function is rescaled
by a factor of the ratio of the value of a relevant observable H (the mass of the vector meson
appears to be an optimal choice) measured at the simulated quark mass to its physical value. This
effectively defines the calculation of a new quantity which approaches the desired a(2)had

µ in the
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physical limit. We show the results of such a calculation in Fig. 2b, along with an accompanying
chiral extrapolation. The chiral variation in this redefined quantity is such that it allows for a linear
extrapolation in quark mass. This method does indeed moderate the chiral behaviour of the result,
however it has little effect on our data at light quark masses, primarily because the lattice vector
meson masses are very near that of the physical ρ meson, and, as of now, are not determined to any
great precision on these lattices. As such this technique does not improve our chiral fit at this time,
producing a compatible result with a similar uncertainty:

a(2)had
µ = 605(24)×10−10 (4.2)

5. Conclusions

We present a fully dynamical calculation of the leading-order hadronic vacuum polarisation
contribution to the anomalous magnetic moment of the muon, using a 2+1 flavour simulation lattice
QCD using domain wall fermions. Although we have an expensive fermion discretisation, we
improve the accuracy of our result by convolving an accurate determination of the ground-state
vector meson mass with our determination of the lattice hadronic vacuum polarisation in order to
suppress the systematic uncertainty associated with the choice of fit ansatz. Our chiral extrapolation
involves lattices at different bare couplings, and thus different lattice spacings, however at this level
of precision we do not detect any significant discretisation, or finite volume errors in our result. Our
final result we take to be

a(2)had
µ = 641(33)(32)×10−10 (5.1)

where the first error is statistical and the second is an estimate of the systematic error arising from
the extrapolation to the chiral limit, taken as 5%, motivated by the variation between the results
(4.1) and (4.2). Our largest systematic uncertainty arises from the omission of the disconnected
contributions and is of the order of 10% [15]. In order to obtain a more comprehensive and accurate
result, we must include the disconnected contributions in our calculation. Furthermore, this being
a first effort at deducing this quantity from our lattices, we have plans to improve it in a number of
ways. In addition to the enhancement of our statistics, we would like to obtain a higher momentum
resolution through the use of twisted boundary conditions, and also to explore the use of stochastic
sources to further enhance our signal.
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