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Electric polarizability is an important parameter for the internal structure of hadrons. Previous
studies of polarizabilities have been done at relatively heavy pion masses, leaving the chiral region
largely unexplored. In this report, we use overlap fermions which are known to be computation-
ally demanding to properly capture the chiral dynamics. We present an implementation strategy
to construct overlap on multi-GPUs. We find that our GPU code has an equivalent of ∼ 30 CPU
cores to 1 GPU. We also present preliminary results for the polarizability of the neutral pion.
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1. Introduction

Electric polarizability is an important characterization of the internal structure of hadrons.
However, current lattice QCD calculations use pion masses mπ > 300 MeV which is a factor of 2
greater than the physical mass. Yet, at relatively low pion masses that lie above the physical point,
interesting physics is still predicted to occur. For example, when mπ is smaller than m∆−mn, the
polarizability is expected to change substantially [1].

The effects of chiral symmetry breaking become important at lower masses. Furthermore, ex-
ceptional configurations appear more frequently in the simulations [2], making the inversion of the
Dirac operator more problematic. To overcome these difficulties, we use the overlap operator [3]
which preserves exact chiral symmetry on the lattice and does not suffer from exceptional configu-
rations. However, the overlap operator is computationally expensive. Due to this we implement it
on Graphic Processing Units (GPUs).

In recent years, the usage of GPUs has increased in the lattice community [4], [5], [6], [7],
[8]. They are known to outperform CPUs by large factors. However, one drawback is that they
have relatively small memory compared to CPUs. The overlap operator is not only numerically
demanding but it is also memory intensive, forcing us to implement overlap using multi-GPU
architectures.

The outline of the paper is as follows: In section 2, we introduce the overlap formalism and the
method we use to approximate it. Section 3 describes the implementation of overlap on GPUs and
how we compute overlap quark propagators; here, we also address the issue of memory constraints.
In section 4, we describe the methodology of how we compute the polarizability. In particular, the
background field method [9] is discussed. Lastly, we present our results on the neutral pion.

2. Overlap Formalism

The Dirac overlap operator is defined as

Dov = 1+ γ5 sign(Hw), (2.1)

where Hw ≡ γ5Dw and Dw is the Wilson Dirac operator. It is numerically not feasible to compute
sign(Hw) exactly. There are 2 commonly used approximations for the sign function: polynomial
[10] and rational [11] approximations. In this study, we use the polynomial approximation. One
constructs a polynomial P(x) = (p0 + p1x+ p2x2 + ..pnxn) to approximate x−1/2. The matrix sign
function is then approximated as sign(Hw)≈ QP(Q2), where Q = Hw/||Hw||.

The order of the polynomial can be estimated using the empirical formula [10]

δ = Ae−bn
√

ε , (2.2)

where A = 0.41, b = 2.1. The parameter δ is the error of the approximation i.e. δ = |1−
√

xP(x)|.
The parameter

√
ε defines an interval, [−

√
ε,
√

ε], around zero where the approximation breaks
down. Because we want the approximation to be valid over the whole spectrum of Hw,

√
ε needs

to be less than the smallest eigenvalue of Hw. In our runs, we find λmin ∼ 10−4. The corresponding
polynomial order is ∼ 105 for δ = 10−10. However, this is impractical.
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The general approach to this problem is to divide the approximation into 2 regions which
we call the small space and large space. The small space is computed exactly by calculating a
small spectrum of Q around zero. The remaining large space is approximated by sign(Hw) ≈
QP

(
Q2

)
with a significantly smaller polynomial order. This makes the calculation more feasible.

Figure 1 shows a small order approximation and the breakdown of the 2 regions. We compute

Figure 1: Polynomial approximation xP(x2) for the sign function with δ = 0.1, n = 13, and
√

ε = 0.06.
This is a schematic diagram of how the sign function approximation is divided into 2 parts: small space and
large space. The green/vertical and red/horizontal region corresponds to the small space and large space,
respectively.

the quark propagators using adaptive conjugate gradient (CG) methods. For small quark masses,
the convergence is very slow. Therefore, we use deflation to help speed up the calculation. This
consists of computing the low lying spectrum of the overlap operator. For pion masses on the order
of 200 MeV, deflation was shown to increase the convergence rate by a factor of 3-4 [12]. The
process of obtaining the eigenmodes for Dov is similar to the computation of the eigenmodes of Hw

that is used for the small space calculation. We now describe how to implement these eigensystem
and propagator calculations on GPUs.

3. Overlap implementation on multi-GPUs

GPUs have been very successful thus far in lattice QCD calculations. They have good float-
ing point performance and large memory bandwidth. However, a drawback of GPUs is their fixed
memory size, ranging from 1-6 GB per GPU. Because the CPUs are bottlenecked by communica-
tion over the PCI bus, it is advantageous, though not always possible, to keep all necessary data on
the GPU memory.

In this study, we used a lattice size of 243×64. The calculations were done on a GPU cluster
consisting of 6GB of memory per GPU. On a single GPU, we can store 36 vectors. We will show
that due to memory constraints, we cannot compute overlap propagators on a single GPU, forcing
us to use multi-GPU architectures.

3.1 Eigensystem solver

The practical implementation of the overlap operator requires the calculation of the lowest
lying eigenmodes of Hw. In order for one to use deflation, we also need to compute the lowest
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eigenmodes of Dov. To calculate these eigenmodes, we use implicitly restarted Arnoldi factoriza-
tion [5]. In this algorithm we build a subspace of the size 2.5l, where l is the number of desired
eigenmodes. In most cases, l is too large so that the required memory cannot fit into a single GPU.

For the Hw eigensystem the choice of l is dictated by the spectrum of its eigenvalues. We note
that for a given δ there is an inverse relation between n and λl . It has been shown [12] that using
smeared operators increases the magnitude of the eigenvalues for the low lying eigenmodes. In
this study, we smear the gauge links 3 times using nhyp smearing [13]. In fig. 2 we plot a small
spectrum of Hw as a function of the number of eigenvalues for a single configuration. Going from
l = 100 to 200, n is reduced by about a factor of 2. However, going from 200 to 300 there only is a
15% reduction. Moreover, l = 300 requires 1.5 times more memory, we therefore choose l = 200.
The advantage of using smaller values of l is discussed below.
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Figure 2: Polynomial order to approximate the sign
function as a function of l.
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Figure 3: Strong scaling of the double precision
dslash on 243×64 lattice.

With l = 200 a minimum of 16 GPUs are needed in order to hold this amount of data. One
should always use the least amount of GPUs required to do the calculation; this is due to the
scaling of the dslash operator. Recall that the overlap calculation requires a large amount of dslash
multiplications. Our timings indicate that approximately 70% of the overlap calculation is spent in
the dslash routine. The scaling of dslash directly affects the scaling of overlap. Figure 3 shows the
dslash scaling from 1 to 32 GPUs. From the plot we see that it is beneficial to use the least amount
of GPUs.

Chebyshev acceleration [14] has also been implemented in this calculation. This serves 2 pur-
poses. First, it speeds up the convergence of the Hw eigensystem. We use a Chebyshev polynomial
of order 100. The algorithm usually converges in 1 iteration. Second, it offers an alternative when
GPU memory alone is insufficient. By using the Chebyshev acceleration in conjunction with the
Arnoldi eigensolver, we can utilize CPU memory. However, in the case of Hw this may impact the
performance of the code substantially as explained below.

In simulations where GPU memory is not sufficient, we implemented a mixed code to utilize
both CPU and GPU memory. CPU memory is generally much larger than GPU memory; one can
store all the Hw eigenvectors on the CPU. If the eigensystem solver uses no Chebyshev accelera-
tion, we would have to transport each vector to and from the CPU memory after a single dslash
multiplication. The overhead associated with transporting the vectors over the PCI bus would be
much greater than the time spent in the calculation which would make the code very inefficient.
However, by using Chebyshev acceleration one needs to perform a few hundred dslash multiplica-
tions for each vector transported. This hides the communication overhead. The drawback is that
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all vector routines, such as vector additions and scalar products, are computed on the CPU. This
can impact the performance of the code substantially. In particular, the larger value of l will have
a worse performance because the number of dslash operations (done on GPU) scales as l while the
number of vector routines (done on CPU) scale like l2 in the Arnoldi algorithm.

The GPU cluster used for our runs has 6GB of memory per GPU with QDR Infiniband. We
use 16 GPUs in order to fit all data into GPU memory. To compare the GPU performance with
CPU codes, we run similar calculations on a Cray XT-5 machine. Since the scaling of the CPU
codes is poorer than our GPU codes, we run our codes on 256 cores which is the minimum required
to complete our tests in the time limit imposed by the scheduling system.

In our runs with 16 GPUs and l = 200 the all GPU code takes 510 seconds, while the mixed
code takes 1600 seconds. Our all CPU code took 1100 seconds. Compared to the all GPU code
and the machines we ran on, we find that there is an equivalent of about 34 CPU cores to 1 GPU.
For the mixed algorithm there is an equivalent of 11 CPU cores to 1 GPU.

Once the Hw eigenvectors have been computed, we can obtain the eigensystems for Dov which
will be used for deflation to help speed up the propagator calculations. We again use the Arnoldi
eigensolver to compute the eigensystem in a similar manner as was done with Hw which includes
using Chebyshev acceleration. A mixed approach using CPU and GPU memory can also be used
for computing the eigensystem of Dov if GPU memory is limited. Because Dov requires all of the
Hw eigenvectors for each matrix multiplication, we keep all Hw eigenvectors on the GPU and all
Dov eigenvectors on the CPU. In contrast to what was seen in the case of Hw, there is only a 40%
slowdown going from an all GPU code to the mixed code. We used a Chebyshev order of 12 for
these runs. The calculation of the 100 lowest eigenmodes for the overlap operator required a total of
4.8 hours on our all GPU code and 6.7 hours for our mixed code. The main reason for the increase
of relative performance of Dov, in comparison to Hw, is due to the fact that Dov has to perform
many more dslash operations for each Arnoldi iteration. For the mixed code one should notice that
the calculation of eigenmodes for Dov is much more expensive than for Hw. This means that the
factor of 3 in performance lost in the mixed Hw code is not substantial when considering the whole
calculation of eigensystems. Again, we can compare our GPU code to an all CPU calculation. The
all CPU required 11.2 hours on 256 cores for the eigensystem calculation of Dov. Thus, there is a
GPU equivalent count of 37 and 27 for the all GPU and mixed code, respectively.

3.2 Quark propagator calculation

To compute D−1
ov ψ with a given precision we implemented an a adaptive multi-mass CG

method [15]. The precision of Dov can be tuned by changing the order of the polynomial n. As the
CG process converges less precision is required at each step. This allows us to change the order
of the polynomial accordingly. Furthermore, at some point the precision required can be achieved
using single precision arithmetic. This produces an even better performance. For a quark mass
corresponding to mπ ≈ 200 MeV and a residue of 10−8, the adaptive CG took 0.8 hours, while the
non-adaptive CG required 1.6 hours.

The most expensive procedure for computing an overlap quark propagator is the calculation
of eigensystems for Dov. Altogether, a complete quark propagator calculation for this work takes
roughly 6 hours using 16 GPUs with the all GPU code. We apply this overlap implementation to
compute the polarizability of hadrons.
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4. Methodology and Results

We use the background field method to introduce a constant electric field onto the lattice. The
basic formulation is to modify the covariant derivative in the following way

Dµ = ∂µ − iGµ − iqAµ , (4.1)

where q is the electric charge. Gµ and Aµ are the gluon and photon fields, respectively. Aµ has the
effect that it multiplies all the gauge links by an extra U(1) phase factor i.e. Uµ → e−iqAµUµ .

In this work, we focus on the neutral pion polarizability. One method to extract the energies
for the neutral pion is by looking at the ratio of correlation functions. This is given by

R(t) =
GE(t)
G0(t)

→ e−(m+∆m)t

e−mt = e−∆mt , (4.2)

where GE and G0 are the correlation functions with and without the electric field, respectively. ∆m
is the desired energy shift of the hadron.

The calculation of R(t) is relatively expensive. To obtain a better signal for GE(t) we compute
propagators with both positive and negative values of the electric field. Furthermore, for each non-
zero value of the electric field we need to compute u and d propagators separately. This requires 5
different calculations of the Hw and Dov eigensystems.

We use 40 configurations of the 2+1 domain wall fermion gauge configurations [17] on 243×
64 lattices with a−1 = 1.73(3) GeV and a pseudoscalar sea mass ≈ 330 MeV. We used 4 different
source positions, equalling a total of 160 propagators for each value of the external field. Adding a
new source is relatively inexpensive since the Hw and Dov eigensystems do not have to be recom-
puted. A total of 7 masses were used, with the lowest mass roughly 240 MeV. Figure 4 shows a
plot of the extracted polarizabilities for the neutral pion. We see that at mπ ≈ 500 MeV the polar-
izability changes sign. This is consistent with other studies [2]. Our error bars are rather large due
to small statistics used. We are currently generating 4 times the statistics to get a cleaner signal at
lower masses.
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Figure 4: π0 polarizability.

5. Conclusion

The calculation with overlap fermions is very computationally demanding. However, we have
constructed an efficient implementation of the overlap operator on GPUs. We presented a strategy
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to utilize both CPU and GPU memory if GPU memory alone is insufficient to hold all of the
required data. Our simulations with the all GPU code indicate that a single GPU performance is
equivalent to roughly ∼ 30 CPU cores on the machines used. We have also presented preliminary
results of the neutral pion polarizability using overlap fermions. We are currently in the process of
generating a factor of 4 in statistics in order to reduce our error bars.
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