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We report on our lattice calculations of the nucleon’s generalized parton distributions (GPDs),
concentrating on their first moments for the case of N f = 2. Due to recent progress on the nu-
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low as 260 MeV. We perform a fit to one-loop covariant baryon chiral perturbation theory with
encouraging results.
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1. Introduction

The study of the internal structure of hadrons still presents an exciting challenge. Among the
different types of studies, the computation of Generalized Parton Distributions (GPDs) is especially
challenging, but also attractive, because of their potential for hadron physics.

GPDs were introduced in the late 90s. For a given hadron, they provide detailed information
on the partonic structure with respect to spatial, momentum and spin degrees of freedom. GPDs
combine the information of the traditional form factors and parton distribution functions (contain-
ing them as limiting cases) into a single set of functions and hence contain information also on
the correlation between the momentum, spin and spatial degrees of freedom. For the nucleon, one
hopes GPDs will provide one day a three-dimensional spatial picture, a better understanding of its
spin structure and a value for the quark orbital angular momentum [1].

Beside the renormalization scale1, GPDs depend on three kinematic variables: the longitudinal
parton momentum fraction x, the skewness parameter ξ and the virtuality t. The quark structure of
a nucleon, for example, is governed by eight GPDs. Among these, the unpolarized GPDs H and E
parametrize the off-diagonal matrix element

〈N(P′)|Oµ

V (x)|N(P)〉=U(P′)
{

γ
µH(x,ξ , t)+

iσ µν∆ν

2mN
E(x,ξ , t)

}
U(P) +higher twist . (1.1)

Here P and P′ denote the incoming and outgoing nucleon momenta (and so ∆ = P′ − P, P =

(P′+P)/2, t = ∆2 and ξ =−n ·∆/2) and Oµ

V (x) is the light-cone bilocal operator

Oµ

V (x) =
∫

∞

−∞

dλ

2π
eiλx q̄

(
−λ

2
n
)

γ
µPe−ig

∫−λ/2
λ/2 dα nA(αn)q

(
λ

2
n
)
, (1.2)

which often arises in hard scattering processes (see, e.g., [3]). n (with P ·n = 1) denotes a light cone
vector in Eq.(1.2) and P the correct path-ordering of the gluon fields A. The polarized nucleon
GPDs, H̃ and Ẽ, are defined in a similar manner, replacing γµ in Eq.(1.2) by γµγ5.

2. GPDs and the lattice

GPDs can be accessed experimentally, for instance, via deeply virtual Compton scattering.
The analysis, however, is rather demanding and requires also a partial modeling of the combined
x-, ξ - and t-dependence. Cross-checks to other methods are thus inevitable.

A promising method is given by lattice QCD computations. Although a direct determination
of GPDs on the lattice is not possible, their (Mellin) moments∫ 1

−1
dxxn−1H(x,ξ , t),

∫ 1

−1
dxxn−1E(x,ξ , t), . . . (2.1)

are accessible. For a nucleon, for example, these moments can be calculated via matrix elements
〈N(P′)|O|N(P)〉 of local operators O. For H and E these operators read

Oµν1·νn−1
V (z) = q(z)γ

{µ iD
↔

ν1 · · · iD↔νn−1}q(z)− traces (2.2)
1For simplicity, we drop the explicit reference to the renormalization scale µ in what follows. It is always implicitly

understood. Our lattice data below has been nonperturbatively renormalized [2] and is for the MS scheme at µ = 2GeV.
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where q refers to a quark field, D
↔ ≡D

→−D
←

to the covariant derivative and {· · ·} to a symmetrization
of the Lorentz indices. For a definition and further details on the operators needed for the remaining
nucleon GPDs, the reader may refer to [4].

Admittedly, the computation of such matrix elements is quite demanding already for n ≥ 2,
and we are not yet in the stage to provide precision results close to the physical point. Nonetheless,
such calculations have become more and more feasible in recent years, and hence have attracted
interest from within the lattice community [5, 6, 7, 8, 9, 10, 11].

In what follows, we will restrict ourselves to the two nucleon GPDs H and E. Their moments
are polynomials in ξ ,∫ 1

−1
dxxn−1

[
H(x,ξ , t)
E(x,ξ , t)

]
=

[(n−1)/2]

∑
k=0

(2ξ )2k

[
An,2k(t)
Bn,2k(t)

]
±δn,even(2ξ )nCn(t) . (2.3)

The expansion coefficients A, B and C are real functions of the momentum transfer t (and the
renormalization scale µ) and are known as the Generalized Form Factors (GFFs) of the nucleon.
In this notation, for instance, A10 and B10 correspond to the electromagnetic form factors [12], and
A20, B20 and C2 parametrize the matrix elements of the energy-momentum tensor Oµν

V

〈N(P′)|Oµν

V |N(P)〉=U(P′)
{

γ
{µPν}A20(t)−

i∆ρσρ{µ

2mN
Pν}B20(t)+

∆{µ∆ν}

mN
C2(t)

}
U(P) . (2.4)

Below we present results for A20, B20 and C2. They can be extracted from ratios of two- and
three-point correlation functions

R(t,τ, p′, p) =
C3(t,τ, p′, p)

C2(t, p′)
×
[

C2(τ, p′)C2(t, p′)C2(t− τ, p)
C2(τ, p)C2(t, p)C2(t− τ, p′)

]1/2

, (2.5)

which are proportional to 〈N(P′)|Oµν

V |N(P)〉 and constant in the limit 0� τ � t . T/2 (T is the
temporal lattice extension). C2(t, p) is the nucleon two-point function with a source at time 0 and
sink at time t, and C3(t,τ, p′, p) is the three-point function with an operator insertion at time τ . The
latter we calculate employing the sequential source technique.

3. Results
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β = 5.29, κ = 0.13632 : 243 × 48
323 × 64
403 × 64

Figure 1: A20(t) for the isovector case for β =

5.29 and κ = 0.13632 and for different volumes.

Our data for the GFFs is for gauge configura-
tions thermalized using the standard Wilson gauge
action and two flavors of clover-improved Wilson
fermions. The gauge couplings are β = 5.25, 5.29
and 5.40; and the κ values are such that pion masses
from 1GeV down to 260MeV are simulated, where
we primarily work with the data in the mass range
260MeV ≤ mπ ≤ 490MeV. The scale is fixed
through setting r0 = 0.5fm. This is about the value
we obtain from chiral extrapolations of our nu-
cleon mass data [13] for the same set of config-
urations. The lattice sizes are 243× 48, 323× 64, 403× 64 and 483× 64. In particular the latter
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Figure 2: The generalized form factors A20, B20 and C2 (from top to bottom) vs. momentum transfer −t;
left for the isovector channel, right for the isosinglet channel. The data is for three lattice spacings and two
groups of approximately equal pion masses. If applicable, solid (dashed-dotted) lines represent dipole fits
to the data. Dashed lines at low t result from a simultaneous fit of the low-pion-mass data (full symbols) to
covariant chiral perturbation theory (see text and also Fig. 3 for more details).
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two provide us with a good signal-to-noise ratio. See, for example, Fig. 1, where data for A20(t)
in the isovector channel is shown for the lattice sizes 243×48, 323×64 and 403×64 at β = 5.29
and κ = 0.13632 (mπ = 287 MeV). The number of measurements is 2755, 3013 and 1478, respec-
tively. The advantage of volume averaging is clearly evident as with about half the statistics, the
data for the 403×64 lattice comes with much less statistical noise than that for the 243×48 lattice.
Moreover, Fig. 1 indicates that finite size effects are small, at least at our level of precision.

A selection of all of our GFF data is shown
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Figure 3: Au−d
20 (top) and Bu−d

20 (bottom) vs. −t at
the pion masses 261 and 288 MeV. Dashed lines re-
sult from a simultaneous fit of the data (including
that for Cu−d

2 ) to expectations from BChPT [14].

as a function of the momentum transfer −t in
Fig. 2. There, the panels from top to bottom dis-
play the respective data for A20(t), B20(t) and
C2(t). Left panels are for the isovector case, right
panels for the isoscalar (without disconnected con-
tributions). For simplicity, only data for five en-
sembles is shown, which fall into two groups of
approximately equal pion mass. For the larger
pion mass (430–490 MeV), we have results for
three lattice spacings (a= 0.06, 0.07 and 0.08 fm),
for the smaller one (260–287 MeV) we can show
data for two sets (a = 0.06,0.07 fm). For this
(admittedly small) range of lattice spacings we
observe, however, no systematic dependence on
a. Apparently, there is a slight vertical shift in
the data for A20(t < 0) [and in the opposite direc-
tion for B20(t < 0)] for the lighter sets, but we do
not see these shifts for the heavier sets (including
those not shown), at least with the available pre-
cision. It will be interesting to see how well our forthcoming results at β = 5.25, κ = 0.13620 (i.e.,
a = 0.084 fm, 260 MeV pion mass) fit to these findings.

Similarly, we observe a trend for A20(t) if the pion mass is changed: The low-t dependence
of A20(t) gains slope if mπ is reduced from 430–490 MeV to 260–287 MeV. This effect, however,
is small and we see no such effect in the data from 500 MeV to 1 GeV pion mass. It thus remains
to be seen if this effect at lower mπ stays or disappears with higher statistics. As above, a further
check should become possible as soon as our results at β = 5.25 and κ = 0.13620 are available.

We can confirm though the (notorious) weak mπ dependence of Au−d
20 at t = 0, i.e., of 〈x〉u−d

(see upper left panel in Fig. 2). From phenomenology one expects 〈x〉u−d ≈ 0.16 at the physical
point. So far, however, all available (world) lattice data for 〈x〉u−d for pion masses above 200 MeV
gives values for 〈x〉u−d well above 0.16, and moreover, almost no signal for a downwards trend
towards the physical point is seen (see, e.g., [4] and references therein). From baryon chiral pertur-
bation theory (BChPT), for example, such a trend is expected, but it has not yet been demonstrated
(convincingly) on the lattice.

It is however interesting that our data for |t|< 0.4GeV2 indicates an almost linear t-dependence
for Au−d

20 (t) and a flattening of the slope for Bu−d
20 (t). This would be consistent with expectations

from covariant BChPT at leading-one-loop order [14].
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In Fig. 2, and in particular in Fig. 3, we show a first attempt of fitting our data to the BChPT
expressions for A20, B20 and C2 as worked out in [14] (see the dashed lines at lower t). Note
that such a fit has to be a combined fit to the data for all three GFFs simultaneously, because
the parameter a20 enters all of them. The dashed lines in Figs. 2 and 3 refer to such a fit which
incorporates only the lighter data sets (full symbols) and points for |t|< 0.44GeV2. Five parameters
(a20, b20 c20, cr

8 and c12) were left free, while the phenomenological value 〈∆x〉phen
u−d = 0.21 was

used to constrain the coupling ∆av
20. The mπ -dependence of the nucleon mass (entering the BChPT

expression for B20 and C2) and the parameter M0 were taken from our nucleon mass fits [13].
It turns out that for the isovector case the fit quality is quite good: A reduced χ2-value of about

one is reached and the low-t dependence of A20 and B20 is roughly reproduced; actually, also for
C2, as only the data point at the smallest |t| falls somewhat below the fitting curve. For the isoscalar
case, the same fit works less satisfactorily. The reason might be that BChPT does not work at the
pion masses under consideration, or that disconnected contributions are not negligible. The latter
are certainly worth to be calculated.

Even though disconnected contributions are still
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Figure 4: The total quark angular momentum J
and spin sq vs. pion mass.

missing, it is interesting to look at the total quark
angular momentum

Ju,d =
1
2

[
Au,d

20 (0)+Bu,d
20 (0)

]
, (3.1)

to check if it is in the ballpark of expected values.
In Fig. 4 we show this data for our lighter sets, that
is, for pion masses 261 and 287 MeV. Note that
for Au±d

20 we have data directly at t = 0, but not
for Bu±d

20 (0). However, looking at Fig. 2 one easily
sees that the main contribution to Ju+d comes from
Au+d

20 (0) and the t-dependence of Bu±d
20 is compa-

rably weak. We therefore approximate Bu±d
20 (0) by

our data for the smallest |t|. This should be perfectly fine for our purposes, given all the other
uncertainties and the lack of disconnected contributions. Note that in Fig. 4 we have also included
data for the quark spin

sq =
1
2

∫ 1

−1
dxH̃(x,ξ ,0) =

1
2

Ãq
10(t = 0) , (3.2)

which we obtain from data2 for the axial nucleon GFFs Ãu−d
10 and Ãu+d

10 .
If we compare our data in Fig. 4 with that of the LHPC collaboration [15], we find good

agreement (albeit their data is for N f = 2+ 1). We also see the same ordering for the total and
orbital (Lq = Jq− sq) angular momentum and the quark spin:

|Jd | � |Ju|, |Jd | � |sd |, |Lu+d | � |Lu|, |Ld | .

It will be interesting to see how this figure changes when data at smaller pion masses becomes
available and/or disconnected contributions are included.

2Unfortunately, there is no data for Ãu±d
10 at β = 5.4 for these small pion masses, but it will become available soon.
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4. Conclusions

We have presented an update on our efforts to calculate the generalized form factors for the
nucleon. We have restricted ourselves here to the case of N f = 2 and reported only on results for
the GFFs of the energy-momentum tensor (n = 2). Due to recent progress on the numerical side we
are able to provide data for these GFFs for pion masses down to 260 MeV. In particular our lighter
sets provide an improvement of the available data for these form factors: Large lattice volumes
have allowed us to obtain a very good signal-to-noise ratio, and at low |t| our data starts to fulfill
expectations from one-loop BChPT. When comparing our data to that of the LHPC collaboration
presented at this conference [15] we see a small vertical offset for the GFF data, but overall agree-
ment for angular momentum and spin. It remains to be seen if this offset is due to the different
renormalization procedures of the lattice operators or due to the different N f .

The numerical calculations have been performed on the APEmille, apeNEXT systems and PAX cluster
at NIC / DESY (Zeuthen, Germany), the IBM BlueGene/L at EPCC (Edinburgh, UK), the BlueGene/P
(JuGene) and the Nehalem Cluster (JuRoPa) at NIC (Jülich, Germany), and the SGI Altix and ICE 8200
systems at LRZ (Munich, Germany) and HLRN (Berlin-Hannover, Germany). We have made use of the
Chroma software suite [16]. The BlueGene codes were optimised with Bagel [17]. This work has been
supported in part by the DFG (SFB/TR 55, Hadron Physics from Lattice QCD) and the EU under grants
238353 (ITN STRONGnet) and 227431 (HadronPhysics2). A.St acknowledges support by the European
Reintegration Grant (FP7-PEOPLE-2009-RG, No.256594). JZ is supported by the University of Adelaide
and the Australian Research Council through a Future Fellowship (FT100100005).
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