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The combination of QCD and electroweak interactions underlies all of nuclear physics, and
quantitative explorations of nuclear observables directly from QCD using lattice QCD in the non-
perturbative regime are becoming accessible. This is particularly meaningful for processes which
are poorly understood experimentally, such as the neutral current parity violating (PV) weak in-
teraction between quarks. Indeed, this interaction stands apart as the least understood portion of
the standard model. Here we report on the first calculation directly from QCD of the leading-
order momentum-independent parity violating coupling between pions and nucleons, h1

πNN , using
n f = 2+1 lattice QCD calculations on configurations with a pion mass of mπ ∼ 389 MeV.

Parity violating interactions have been known since the late 1950s[1, 2, 3], and while these
interactions can be studied in flavor-changing decays the effects of the PV neutral-current in such
decays are tiny, as the tree-level coupling between quarks and the Z boson are flavor diagonal and
radiative corrections are suppressed by the GIM mechanism[4, 5]. This leaves PV flavor conserving
interactions as the only laboratories for studying the weak neutral current, with the nucleon-nucleon
(NN) PV interaction as the only accessible case. Isolation of the hadronic weak neutral current
occurs in the ∆I = 1 NN channel, and this component is thought to be dominated by long-range
pion exchange[4, 6].
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Figure 1: Model estimates[7, 8, 9, 10, 11, 12, 13, 14] (solid line and triangles at top) and experimental
results (dashed lines with labels and 1σ error ellipse in grey, from Refs. [4, 15, 16] and references therein)
for h1

πNN versus the dominant isoscalar PV coupling combination, along with the results of this work (solid
vertical line and error band).

At hadronic scales the weak interaction can be qualitatively considered as a pointlike four-
quark interaction which gives rise to a pion that mediates long-range interactions. Experiments to
uncover this effect are technically demanding however, as the ratio of the weak to strong contri-
butions to the NN interaction is approximately 10−7. In the decades since the discovery of parity
violation, a heroic series of experiments (see Refs. [4, 15, 16] and references therein) have sought
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to uncover the value of h1
πNN , defined as

L πNN
PV = h1

πNN
(

p̄π+n− n̄π−p
)

(1)

with a proton (p), neutron (n), and pion (π). The most precise of these experiments are plotted
with dashed lines in Fig. 1, with the combined 1σ error ellipse shown in grey. The coupling h1

πNN

dominates the long range parity violating NN potential as it is not suppressed by powers of mo-
mentum. Although lacking precision, experimental results thus far suggest that while the isoscalar
PV interaction is of natural size, the isovector interaction h1

πNN is suppressed. Early results from
the most recent experimental collaboration to examine nuclear parity violation, the NPDGamma
collaboration[17], have thus far not provided any significant constraint on h1

πNN . However, the
experiment is currently being reinstalled at the Spallation Neutron Source at Oak Ridge National
Laboratory and should very soon be able to reach its design precision.

Several model-dependent attempts have been made to calculate h1
πNN in such a way that the

nonperturbative QCD effects are included. The earliest of these used the quark model in com-
bination with several symmetry considerations to make the first robust theoretical predictions of
h1

πNN[14] (the DDH result). Despite a tremendous amount of effort, the remaining systematic un-
certainties from the nonperturbative sector of QCD prevented Ref. [14] from specifying a result,
and instead the outcome of the calculation was presented as a ‘best guess’ and an accompanying
range of values. Subsequent calculations using the quark model[9, 10], chiral solitons[7, 8], and
QCD sum rules[11, 12, 13] have obtained greatly varying values of h1

πNN , but all have remained
within the original DDH range. The DDH range and the results of each model calculation are
shown at the top of Fig. 1.

The calculation presented here uses one ensemble of n f = 2 + 1 anisotropic clover gauge
configurations with a pion mass of mπ ∼ 389 MeV, spatial lattice spacing of as ∼ 0.123(1) fm, and
an anisotropy of ξ = 3.50(3)[18, 19]. The configurations have a total extent of 203 ×256, leading
to a spatial dimension of L ∼ 2.5 fm and mπL ∼ 4.9. Three-point correlation functions of the form

Ci j
A→B(t, t

′) = ⟨0|OB, j(t)O∆I=1
PV (t ′)O†

A,i(0)|0⟩ (2)

are constructed, with t the sink timeslice and t ′ the operator insertion timeslice. On,k is an interpolat-
ing operator with the quantum numbers of state n and source/sink smearing of type k. Sandwiched
between these operators is the four-quark operator for the ∆I = 1 PV interaction. Two-point cor-
relation functions of the form Ci j

n (t) = ⟨0|On, j(t)O
†
n,i(0)|0⟩ are also calculated. The interpolating

operator used for the proton is εabcuα
a (d

β
b [Cγ5]βδ uδ

c ), with color indices a, b, c and spin indices α ,

β , δ . A similar operator, εabc[γ5]αωuω
a (d

β
b [Cγ5]βδ uδ

c ), creates a state with the quantum numbers
of the neutron-pion in an S-wave[20, 21, 22, 23] (expected to be the nπ system rather than the S11

negative parity proton at this pion mass). Using a three-quark interpolating operator to create the
nπ state greatly simplifies the quark contractions necessary for the 3-point function. Furthermore,
the simplified operator removes the need to calculate expensive quark-loop contributions at the
sink, which would arise from separate n and π interpolating operators.

The four-quark ∆I = 1 PV operator can be constructed directly from the standard electroweak
interaction Lagrangian[5] at the scale of the weak gauge bosons by integrating out the Z boson
(the contributions from the exchange of the W± bosons are neglected as they are suppressed by
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sin2(θC) ≈ 0.05, where θC is the Cabibbo angle). One can then use continuum one-loop QCD
perturbation theory to run the operator coefficients to the scale of the hadronic interactions (Λχ = 1
GeV) integrating out the heavier b- and c-quarks along the way[24, 6]. During the course of this
running mixing between operators with the same quantum numbers will occur, leaving a total
of 8 operators at the hadronic scale. There is no mixing with lower-dimension operators as the
∆I = 1 PV operator also conserves CP, precluding quark bilinear operators from contributing with
divergent powers of the lattice spacing. The full four-quark ∆I = 1 PV operator at the hadronic
scale can then be expressed as

O∆I=1
PV =−GFsin2(θW )

3
√

2

4

∑
i=1

∫
d3x
(
Ciθ q

i +Siθ s
i
)

(3)

where GF = 1.16637×10−5 GeV−2 is the Fermi coupling and sin2(θW )= 0.231 is the weak mixing
angle[25]. The four-quark operators that contain only light (u and d) quarks are θ q

i , while the θ s
i

contain s-quarks along with light quarks. The coefficients Ci and Si of these operators and the
specific operator forms used for θi in this work can be found in Ref. [26].

Performing the quark contractions in the three-point correlation function of Eq. 2 using the
above operators, one arrives at three possible diagrams for the quark propagators. The first type
connects two of the quarks from both the source and sink operators to the weak operator, with
the third quark going directly between the source and sink. This type is drawn in Fig. 2(a) and
is called the ‘connected’ case. The second, ‘quark-loop’ type of Fig. 2(b) contains a quark loop
at the weak operator insertion while connecting only one quark each from the source and sink to
the weak operator. The final type contains a weak operator where all four quarks are contracted
with each other, leading to an entirely ‘disconnected’ contribution. However, in the isospin limit
the contributions from this type of diagram will sum to zero, saving considerable computational
expense. Because the interpolating operators consist entirely of light quarks, the operators θ q

i will
have contributions to both the connected and quark-loop diagrams, while the operators θ s

i will
contribute only to the quark-loop diagrams as the s-quarks will be required to be contained in the
quark loop itself.

(a) (b)

Figure 2: The (a) connected and (b) quark-loop diagrams that contract the parity-violating operator with
the interpolating operators for the source and sink. The filled circle and square represent the three-quark
interpolating operators used at the source and the sink respectively, with one positive party and the other
negative parity.

The technique of sequential propagators fails for this calculation both in the case of the con-
nected diagrams (due to the need for two propagators between the operator and the sink) and in
the case of the quark loop diagrams (as the quark-loop would remain to be calculated). Instead,
this calculation performs two separate quark propagator inversions, one at the source and one at
the weak operator insertion. This method unfortunately restricts the measurements to a single spa-
tial site on the operator timeslice (all spatial sites are sampled over the course of the calculation),
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but allows for maximum flexibility and computational efficiency (as the propagators may be used
for both the connected and the quark-loop diagrams, and for any of the weak operators). With
this method, the timeslice on which the weak operator is placed (t ′) must be large enough that the
excited states of the source operator are exponentially small, and for this calculation t ′ = 24.

To extract the desired matrix element, a ratio of 3-point and 2-point functions must be formed
such that in the limit of large t ′ and t − t ′ contamination from excited states dies off and the ground
state overlap factors are canceled, allowing the ratio to plateau to the value of the matrix element.
This ratio is given by

Ri j
A→B =

Ci j
A→B(t, t

′)

C j j
B (t)

(
Cii

A(t − t ′)C j j
B (t)C j j

B (t ′)

C j j
B (t − t ′)Cii

A(t)C
ii
A(t ′)

) 1
2

(4)

where the smearing used in the 2-point functions must match that used for the corresponding state
in the 3-point function in order to have the correct cancelation of overlap factors. However, as
discussed in Ref. [26] the differing energy levels of the proton and the nπ states will cause an
insertion of energy by the weak operator to occur, modifying Eq. 1 to

L πNN
PV = h1

πNN
(

p̄π+n− n̄π−p
)
+hEDt

(
p̄π+n− n̄π−p

)
(5)

with some unknown coefficient hE , making the long-time ((t − t ′)→ ∞) behavior of Eq. 4

Ri j
p→nπ → h1

πNN +∆E ·hE . (6)

To remove the ∆E dependence one observes that the first term in Eq. 5 is antisymmetric with respect
to the interchange of the proton and nπ initial and final states, while the second term is symmetric.
Thus the energy injection term can be eliminated with an antisymmetric combination of Eq. 4,
leading to a plateau region given by

H i j =
1
2

(
Ri j

p→nπ −Ri j
nπ→p

)
→ h1

πNN . (7)

A total of 100,871 measurements of each of the smearing combinations of H i j are performed, where
i, j can be either point- or shell-smearing. These measurements are then blocked on each config-
uration and bootstrapped. One can enhance the plateau region for Eq. 7 by taking appropriately
normalized linear combinations of the different smearing combinations, using the matrix-prony[27]
method on the bootstrapped ensemble to determine the optimal linear combination. This is done
for both the connected and the quark-loop contractions. In the case of the quark-loop diagrams the
signal-to-noise ratio remains far too small to recover any reliable result, and indeed it is not possi-
ble to even define a plateau region. It is expected that improvements in both contraction algorithms
and overall calculation runtime will be needed to overcome this difficulty and reliably extract the
quark-loop contribution. For the connected contributions the analysis returns the data shown in
Fig. 3, revealing not only a well defined plateau region, but a robust non-zero contribution to h1

πNN .
In Fig. 3, a fully correlated χ2 minimizing fit to a constant is performed over the plateau region,

with additional systematic error due to the choice of plateau region determined by shifting the ends
of the region ±2 timeslices. The quoted systematic error is then one-half of the maximum minus
the minimum of these shifted fits. The fit result and statistical plus systematic error are shown in
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Figure 3: Lattice results for the contribution of connected quark diagrams to h1
πNN , as a function of Euclidean

lattice time from the operator insertion. The solid line is the fully correlated fit value over the plateau region
with the grey rectangle the statistical plus fit window systematic uncertainty.

Fig. 3 with the solid line and grey band. The contribution of the connected diagrams to h1
πNN is

then found to be
h1,con

πNN = (1.099±0.505+0.058
−0.064)×10−7 (8)

where the first and second uncertainties are statistical and systematic, respectively. Comparing the
error bars on the points with the error band from the fit, one observes a high degree of correlation
between successive timeslices, which results from the lattice anisotropy. The fit result is plotted in
Fig. 1 as the vertical line and error band, and it is consistent with both experimental bounds and
previous model calculations.

In conclusion, we have performed the first calculation of the quantity h1
πNN directly from the

underlying theory of QCD. Our calculation was performed on one ensemble of anisotropic clover
configurations with a pion mass of mπ ∼ 389 MeV. Future calculations will need to be performed
at pion masses closer to the physical point, and with sufficient statistical resolution to extract the
contribution of the quark-loop diagrams (expected to be on the order of 103 more measurements).
Our result, while incomplete, shows good agreement with current experimental bounds and paves
the way toward a complete extraction of h1

πNN at a precision consistent with, or better than, the
anticipated results of the upcoming NPDGamma experiment at Oak Ridge.

We thank M. J. Savage, T. Luu, A. Nicholson, B. Smigielski, A. Walker-Loud, B. Tiburzi, M.
Buchoff, W. Haxton and P. Vranas for many useful discussions and B. Joo for help with QDP++ and
CHROMA[28]. The configurations used were generated on uBGL while the propagator inversions
and contractions were performed on the Edge cluster, both at LLNL. This work was performed
under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-
07NA27344 and the UNEDF SciDAC Grant No. DE-FC02-07ER41457. Preliminary work at the
University of Washington was performed under DOE Grant No. DE-FG02-97ER41014.
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