PROCEEDINGS

OF SCIENCE

Phase diagram of QCD with two degenerate
staggered quarks

P. Cea

Dipartimento di Fisica dell’'Universita di Bari, I-70126 Ba Italy and INFN, Sezione di Bari,
[-70126 Bari, Italy

E-mail: paol 0. cea@a.infn.it

L. Cosmai *
INFN, Sezione di Bari, I-70126 Bari, Italy

E-mail: | eonardo. cosmai @a.infn.it

M. D’Elia

Dipartimento di Fisica dell’'Universita di Genova, I-1614&enova, Italy and INFN, Sezione di
Genova, 1-16146 Genova, Italy

E-mail: massi no. del i a@e. i nfn.it

A. Papa

Dipartimento di Fisica dell'Universita della Calabria, 87036 Rende (Cosenza), Italy and
INFN, Gruppo collegato di Cosenza, 1-87036 Rende (Coseitad)

E-mail: papa@s.infn.it

F. Sanfilippo

Dipartimento di Fisica, Universita di Roma “La Sapienza”@iNFN, Sezione di Roma,
Piazzale A. Moro 5, 00185 Roma, Italy

E-mail: f rancesco. sanfili ppo@onmal.infn.it

We present preliminary results about the critical line of (R@ith two degenerate staggered
guarks at nonzero temperature and chemical potentialingutédy the method of analytic contin-
uation. As in our previous studies with different numbersabrs and flavors, we find deviations
from a simple quadratic dependence on the chemical poteWeacomment on the shape of the
critical line at real chemical potential and give an estienaft the curvature of the critical line,

both for quark chemical potential and isospin chemical pibaé

The XXIX International Symposium on Lattice Field Theoaffice2011
July 10-16, 2011
Squaw Valley, CA, USA

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Phase diagram of QCD L. Cosmai

1. Introduction

Many important issues, such as heavy ion collisions, enoiubf the early universe, physics
of the compact stars, are related to the knowledge of the Q@i3gdiagram. Understanding the
physical phases of QCD [1] in ordinary as well as in extremérenment of high temperature and
high baryon number is therefore a major research goal. dea@CD is the main nonperturbative
tool to investigate the QCD phase diagram. UnfortunatelcQCD simulations at finite quark
density are plagued by the well-known sign problem. As a enait fact, importance sampling
requires positive weights in the partition function

Z(T,u) = /gu e Sl det{M ()], (1.1)

but whenu # 0 this is no longer true, indeed dii(u)] becomes complex in the case of SU(3)
theory and finite quark chemical potential. There are fevepiions where dé¥1(u)] is real (pos-
itive for an even number of flavors), namely for two-color QQDr isospin chemical potential
and for imaginary values of the quark chemical potentiale $iyn problem can be addressed by
means of several techniques, each one, however, suffednglimitations. In the last few years
we approached the sign problem by the method of analytidrasation [2—4]. To this purpose we
started our investigations [5—-7] from some special casewevRhonte Carlo simulations are both
feasible at real and at imaginary chemical potential. Theoe was to have the possibility to test
the results of the analytical continuation by means of disgaulations at real chemical potential.
In the following sections we review some of our earlier resand give preliminary data for the
critical line of QCD withN¢ = 2 standard staggered fermions.

2. Investigations about analytic continuation

The first lesson we learned in studying the phase diagramattdor QCD [6] was that non-
linear terms in the dependence @fon u? in general cannot be neglected. Indeed the prediction
for the pseudocritical couplings at real chemical potésiiaay be wrong if data at imaginagy
are fitted according to a linear dependencg?nin Fig. 1(Left) the discrepancy between the linear
extrapolated critical line and the direct determinatioh8gu?) is shown for the case of two-color
QCD with Ny = 8 degenerate staggered fermions. In the case of SU(3) isokpmical potential
with N¢ = 8 degenerate staggered fermions [7], instead, few intatipaos can be found which
correctly detect deviations from the linear behaviorif at imaginary chemical potentials and
lead to consistent extrapolations to realin agreement with the direct determinations there. In
Fig. 1(Right) we give an example of a good fit (and the relatddapolation) of the critical line,
using a ratio of polynomialg’(u*)/ o (u®).

We have also revisited [8] the determination of the psedltical line of QCD withN; = 4
degenerate staggered quarks at nonzero temperature atkddgnaity by the method of analytic
continuation. The sign problem in this case prevents us fserforming simulations at real quark
chemical potential. Notice that in this case the linear fiios able reproduce the data for pseudo-
critical couplings even at imaginary quark chemical pdtdst To derive the critical line we ex-
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Figure 1: (Left) Critical couplings in two-color QCD at finite quark ngity obtained from the chiral sus-
ceptibility, together with a linear fit imu? to data withau? < 0. (Right) Critical couplings in SU(3) with
finite isospin density together a ratio of polynomialditu®)/ &' (u®).

ploited analytical continuation by means of polynomial @tia of polynomials fit:

a0+ aju? + apu’ + agu®
1+agu2+asput

(2.1)

In Fig. 2(Left) we display the interpolation of the criticlhe at imaginary values of the quark
chemical potential obtained by mean ofdu*) /¢ (u®) ratio of polynomials fit.

A nice alternative to the polynomial fits Eq. (2.1) is givenvlgat we call “physical fit”. The
idea is to write the interpolating function in physical @n@nd to deduce from it the functional
dependence g8 on u?, after establishing a suitable correspondence betweesiqathynd lattice
units. The natural, dimensionless variables of our theoeyTd T;(0), whereT.(0) is the critical
temperature at zero chemical potential, and’. The ratioT /T;(0) is deduced from the relation
T =1/(N:a(B)), whereN; is the number of lattice sites in the temporal direction a(fl) is the
lattice spacing at a givefi (we discard here the dependence on the bare quark amgss We
use fora(f) the perturbative 2-loop expression with the given numbewoddrs and flavors. Now,
adopting the 3-parameter function

[TC(IJ)} ‘_ 14+ Cp?/T2(p) 2.2)
Te(0) ] 14+AUZ/TE(u)+But/T(u) '
we are led to the following implicit relation betwega and 2
14+ Au?/TZ2 +Bu?/T12
az(Bc(uz))IZ—loop = az(Bc(o))‘Z—loop X l—I—CCle/TCZ <. (2.3)

In Fig. 2(Right) we display the interpolation of the critidme at imaginary values of the quark
chemical potential obtains by mean of the 2-loop “physidalfi Eq. (2.3).

Regrettably, even if we are able to have successful fits ofdtta at imaginary chemical
potential, the results of the extrapolation of these fitset values of the quark chemical potential
are quite consistent only up 1o/T ~ 0.6 (see Fig. 3, where our results are compared with data in
the literature collected in Ref. [9]).
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Figure 2: SU(3),N; = 4, finite quark chemical potential. Fits to the critical cbngs: ratio of a 4th- to
2th-order polynomial (Left) and 2-loop “physical fit” aceting to Eq. (2.3).
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Figure 3: Comparison of our extrapolations with other determinationthe literature. For the sake of
readability, our extrapolations have been plotted withetdr bands. Legenda: D’Elia, Lombardo, Ref. [4];
Azcoiti et al., Ref. [10]; Fodor, Katz, Ref. [11]; Kratochaj de Forcrand, Ref. [12].

3. QCD with two degener ate staggered quarks: preliminary result

In this Section we present preliminary results for the caitiine of QCD with two degenerate
staggered flavors. We are going to consider the two casesitefdimark chemical potential and of
finite isospin chemical potential.

We performed simulations using standard action with stagghéermion masam= 0.05 on
a 16 x 4 lattice. Simulations were done using the RHMC algorithmaperly modified for the
inclusion of a finite chemical potential. We collected tyglistatistics of 10 thousand trajectories.
The critical coupling at given chemical potentifih(u?), is determined as the value for which the
susceptibility of the chiral condensate exhibits a peakis Thlue can be deduced by means of a
Lorentzian fit to the peak or through a reweighting analysis.

We learned from our previous studies discussed in Sectibathbn-linear terms ip? cannot
be neglected. We also learned that good fits are achieved agswé two kinds of interpolations.
The first one is given by polynomial or ratio of polynomiale€sEq. (2.1)). The second one
consists in writing down the interpolating function in pkoa units and in performing a fit to the
data through this implicit relation betwega and u? (see Eq. (2.3)). Actually, the linear fit to the
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critical couplings versus imaginary values of the quarkifospin) chemical potential has very bad
guality and we are led to exploit, even for SU(3) ad= 2 staggered flavors, the functional forms
given by Eqg. (2.1) or by Eq. (2.3). In Fig. 4 we give a sample @bdjinterpolations obtained to
data for quark chemical potential and for isospin chemicaéptial by means of the ratio of 4-th
order polynomial to 2-nd order polynomial or employing thpdysical fit” Eq. (2.3).
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Figure 4: (Left) SU(3)N¢ = 2, finite quark chemical potential. Fit to the critical ling imeans of ratio of
4th order to 2nd order polynomial (top) or by means of the ‘gbgl fit” Eq. (2.3) (bottom). (Right) SU(3)
N; = 2 isospin chemical potential. Ratio of polynomial fit (tomdd'physical” fit (bottom).

The circumstance that there are significant deviations fosimple linear behavior ip? is
evident by looking at Fig. 5(Left), where a comparison betwhe ratio of polynomials fit and the
linear fit to data at small imaginary chemical potential aspldyed. The linear fit is restricted to
imaginary chemical potential values such tgafdof < 1. This corresponds to imaginary chemical
potential values withu? < 0.1.

In Fig. 6(Left) we show a comparison between the extrapmtatito real values of the quark
chemical potential starting respectively from three of ti@re successful interpolations of imag-
inary quark chemical potential data. If we consider the apdtation done starting from the
“physical” fit to the quark chemical potential data, and i tmypothesis that we can trust it
down to theT = 0 axis we can give an estimate of the critical valueuoft T = 0. We find
(T = 0) = 3.284(64) T (0) to be compared withu(T = 0) = 2.73(58)T;(0) obtained in Ref. [13]
with N = 2 Wilson fermions.

However, while two of the extrapolations are quite consisteith each other, the third one
(the sixth order constrained, obtained with a sixth orddympmmial fit where the first term is
constrained to the value obtained by a linear fit to small imey chemical potential) differs from
the other two for valuegt /(1iT) larger than approximately.D. In Fig. 6(Right) we compare the
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Figure 5: (Left) SU(3)Ns = 2, comparison between the ratio of polynomials fit (red jreexd the linear
fit to data at small imaginary chemical potential (blue IinefRight) Linear extrapolations starting from
small values of the imaginary quark chemical potential (irees) and small values of the imaginary isospin
chemical potential (blue lines). The full dots are the rissof direct numerical simulations at real values of
the isospin chemical potential.
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Figure 6: (Left) SU(3)Nf = 2 isospin chemical potential. Comparison between ratiotlofodder to 2nd
order polynomial fit and linear fit to small values of the intaayiy isospin chemical potential. (Right) Ex-
trapolations from linear fits at small chemical potentiaitbfor the case of isospin chemical potential (blue
lines) and quark chemical potential (red lines). The fulisdefer to data obtained from direct simulations
at real isospin chemical potential.

same extrapolations in the case of isospin chemical patefitine outcome is almost the same. The
full circles are the values of the critical coupling frometit simulations at real isospin. The first
two data are in agreement with all three different kinds dafapolation. The third point here is in
between. We are now running simulations at larger valuesaifisospin chemical potential.

Finally we are able to give an estimate of the curvature ottitecal line atu = 0 defined as
the derivatived B.(u?)/du? evaluated a1 = 0. By means of the extrapolations from the linear fits
at small chemical potential (see Fig. 5(Right))

Te(H) M2
o =1t (ﬁ) (3.1)

we get the following values for the isospin and for the qudr&roical potential:

a; = —0.470(13) isospin chemical potential (3.2)
ap = —0.522(10) quark chemical potential (3.3)
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The curvatures in the two cases differ for about 5 standavhtiens. The curvature of the critical
line for quark chemical potential is in good agreement \&ith- —0.500(34) from Ref. [14], where
am= 0.025.

4. Conclusions

We have applied the method of analytic continuation to sthedyseudo-critical lin@(u?) in
QCD withN¢ = 2 degenerate staggered fermions in the case of non-zerk cjuamical potential
and in the case of non-zero isospin chemical potential. We leatimated the curvature of the
critical line. As in our previous investigations we find sigrant deviations from a simple linear
behavior inu?. Notwithstanding, there are several kinds of functiong ablinterpolate the critical
line at imaginary values of the chemical potential, leadimgextrapolations which diverge from
each other at large regl.
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