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1. Introduction

It has been well established that at a certain high temperature and large baryon density the
hadronic matter will undergo a phase transition [1, 2]. The nature of the phase transition depends
on the quark mass and its number of flavors. As shown in the leftplot of Fig. 1 at vanishing baryon
density, in upper right corner, i.e. pure gauge case with infinitely heavy quark mass, there exits
a first order phase transition, where the Polyakov loop may server as an order parameter. With
decreasing quark mass, the first order transition will be weakened and is separated from the cross
over region by a second order phase transition line. In the chiral limit, i.e. in the lower left corner of
the left plot in Fig. 1, for 3 flavors, there exists a first orderphase transition, whose order parameter
is the chiral condensate. This first order chiral phase transition extends to a certain region with
finite quark mass and ends at a second order phase transition line, which separates the cross over
region from the first order phase transition region. The universal properties of the this line of the
second transition are expected to be controlled by a globalZ(2) symmetry, which however is not an
obvious global symmetry of the QCD Lagrangian. It is obviousthat neither the chiral condensate
or the Polyakov loop is an adequate order parameter for the spontaneousZ(2) symmetry breaking,
and instead the true order parameter is obtained by mixing the chiral condensate with the energy
density [3]. When the chemical potential is turned on, the second order boundary lines turn into
surfaces, as shown in the right plot of Fig. 1. The qualitative features of the(T −µ) phase diagram
depends on the curvature of the surface atµ = 0. The common expectation is that this curvature
is positive and there exists a chiral critical point atµc. This expectation seems to be confirmed
by lattice simulation using improved p4 action [4]. Calculations using standard staggered action
on Nτ = 4 lattices on the other hard indicate a negative curvature [5]. Thus this issue needs to be
resolved in the future.
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Figure 1: Left: schematic QCD phase transition behavior for different choices of quark masses (mu,d, ms)
at zero chemical potential. Right: The critical surface swept by the chiral critical line at finite chemical
potential. A QCD chiral critical point may exist if the surface bends towards to the physical point. The right
plot is taken from Ref. [4].

To what extent the first order phase transition holds atµ = 0 is of our current primary interests.
Previous estimations using linear sigma model gives the pion mass at the critical point to be around
50 MeV [4, 6] and most recent calculations with complete one-loop parametrization of the linear
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sigma model predict critical pion mass to be around 110 MeV [7]. Here through lattice QCD
simulations we focus on the case with three degenerate quarkmasses, which corresponds to the
dotted diagonal line shown in the left plot of Fig. 1, i.e. to determine the chiral critical point in
the 3-flavor QCD. The boundary of the chiral first order phase transition in the 3-flavor QCD has
been investigated using standard staggered actions [5,8–10] as well as improved staggered actions
(p4, asqtad and stout) [3, 4, 11–14]. There is a significant discrepancy of the quark masses, or the
equivalently the pion masses at the chiral critical point from the above studies. Using the standard
staggered action it was found that the pion mass at the critical point is about 300 MeV [8,9], while
using improved p4 action the critical pion mass is about 70 MeV [4]. The above results are obtained
on the lattices with the temporal extentNτ = 4. Other calculations using p4 and asqtad actions on
finer lattices disfavor critical pion mass of 300 MeV [12,13]. With largeNτ , i.e. Nτ = 6, it has been
shown that the pion mass on the critical lines becomes smaller compared with the one withNτ = 4
using standard staggered fermions [5]. Investigations onNτ = 6 lattices have also been performed
using improved (stout) action, in which three quark flavors are not degenerate and the ratio of light
to strange quark is fixed to be about 1/27 when approaching themassless limit [14]. The analysis in
Ref. [14] suggests that the critical pion mass is about 50 MeV. Thus the first order phase transition
becomes weaker when approaching the continuum limit1.

2. Lattice parameters

As mentioned before, the first order phase transition regionfrom lattice QCD simulations
shrinks with reduced cut-off effects. The Highly Improved Staggered Quark (HISQ) action, which
is developed by the HPQCD/UKQCD collaboration [16], achieves better taste symmetry than the
asqtad and p4 actions at a given lattice spacing. The improvements in HISQ action designed to
reduce taste symmetry violations can translate into smaller lattice spacing dependences in other
quantities and it has been found that the net results from HISQ simulations at lattice spacinga ap-
pear to have similar lattice artifacts as that from asqtad simulations at lattice spacing23a [17]. Thus
the HISQ simulations, which will be used in our simulations,can save substantial computing costs
and can be essentially useful to get better understanding ofthe chiral first order phase transition
region. Simulations have been carried out with 3 degeneratequark flavors. The quark masses vary
from 0.0075 to 0.0009375 corresponding to pion masses in theregion of 80. mπ . 230 MeV. The
parameters of our simulations are given in Table 1.

3. Universality class near critical lines

In the vicinity of the critical lines, the free energy may be expressed as a sum of a regular and
and a singular part,

f =
−T
V

lnZ ≡ fsing(t,h)+ freg(T,m). (3.1)

1The first order phase transition also becomes weaker in the continuum limit from the study of 4-flavor QCD using
HYP action [15].
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lattice dim. amq mπ [MeV] # β values max. no. of traj.

163× 6 0.0075 230 17 6000
243× 6 0.00375 160 12 7900
243× 6 0.001875 110 7 8800
243× 6 0.00125 90 7 5100
243× 6 0.0009375 80 8 6300
163× 6 0.0009375 80 6 7100

Table 1: Parameters of the numerical simulations.

The singular part of the free energyfsing(t,h) is most relevant to the QCD phase transitions and
dominates when system is close to the critical lines. The order parameter M of the transition is
controlled by a scaling function that arises from the singular part of the free energy [18,19]

M(t,h) =−∂ fsing(t,h)/∂h = fG(z), (3.2)

where fG(z) is the universal scaling function andz = t/h1/βδ . β andδ are universal critical expo-
nents. Here scaling variablest andh measure how far the system is away from the criticality. They
are related to the temperatureT and the symmetry breaking (magnetic) fieldH,

t =
1
t0

T −Tc

Tc
, h =

H
h0

=
1
h0

m−mc

mc
, (3.3)

whereTc is the transition temperature when external fieldH vanishes, i.e.m = mc. mc is the critical
quark mass where transition occurs.t0 andh0 are normalization factors.

In the two flavor QCD, the order parameterM for the chiral transition is the chiral conden-
sate and the critical massmc is zero, thus the chiral condensate and chiral susceptibility have the
following relations

M = 〈ψ̄ψ〉/T 3
∣

∣

∣

fixed z
∝ m1/δ , χq/T 2

∣

∣

∣

fixed z
∝ m1/δ−1. (3.4)

In the three flavor QCD, as mentioned before, there is a first order phase transition in the chiral
limit, which extends to a critical quark massmc and ends at a second order phase transition line.
It is expected that the universal properties of this critical point are controlled by a globalZ(2)
symmetry. The proper order parameter should be a mixing of two transition relevant quantities,
e.g. a combination of the chiral condensate with the pure gauge actionSG [3]

M = (〈ψ̄ψ〉+ rSG)
∣

∣

∣

T=Tc, mc

∝ (m−mc)
1/δ (3.5)

and the susceptibility of the order parameter M

χM/T 2
∣

∣

∣

T=Tc, mc

∝ (m−mc)
1/δ−1. (3.6)

Here 1/δ − 1 for Z(2) universal class is -0.785. With standard staggered action,it is important
to construct the correct order parameter since〈ψ̄ψ〉 is large [10]. With improved fermion action,
e.g. HISQ, one may consider the effect from the mixing of the energy field is small since〈ψ̄ψ〉 is
closer to zero. To make estimates on the value ofmc, we will use the quark chiral condensate as an
approximate order parameter for the second order phase transition at the critical point.
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4. Results
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Figure 2: Volume dependences of the chiral condensate (left) and the chiral susceptibility (right) with quark
massam = 0.0009375.

We first look at the volume dependence of quark chiral condensate atam = 0.0009375 (mπ ≈

80 MeV) shown in the left plot of Fig. 2. The volume dependenceat high temperature is small
while at low temperature is relatively large. This is obvious since at high temperature the scale of
the system is controlled by the temperatureT while at low temperature the scales are the hadron
masses. In the right plot of Fig. 2 we show the volume dependences of the chiral susceptibility.
If the system with quark massam = 0.0009375 is in the first order phase transition region, the
chiral susceptibility should scale with the volume. However, such volume scaling behavior is not
observed with pion massmπ ≈ 80 MeV.

In the left plot of Fig. 3, we show the time history of quark chiral condensate near pseudo
critical beta value with our lowest quark mass on 243 × 6 lattices. There is no evidence for the
coexistence of two phases. We then investigate the temperature dependence of the chiral condensate
at different quark masses shown in the right plot Fig. 3. No evidence of the discontinuity of〈ψ̄ψ〉

in β at all quark masses is found. Together with the evidence fromFig. 2 we conclude that there is
no first order phase transition even with quark mass down to 0.0009375 (mπ ≈ 80 MeV).
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Figure 3: Left: time history of the quark chiral condensate nearβc with am = 0.0009375 on 243×6 lattices.
Right: chiral condensates as a function ofβ .

In the left plot of Fig. 4 we show the disconnected part of the chiral susceptibility as a function
of quark mass. The pseudo critical temperature becomes smaller with smaller quark mass. This can
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be explained as that the hadronic degrees of freedom in the system become lighter and thus they
become more easily excited in the thermal heat bath. They then can contribute to the energy density
of the system and thus trigger the onset of a phase transitionalready at a lower temperature. The
peak height of chiral susceptibility grows with decreasingquark mass as the system is approaching
the first order phase transition region. We then performed a scaling fit according to Eq. (3.6) to the
chiral susceptibility peaks. The results are shown in the right plot of Fig. 4. As the finite volume
effects would bring the peak height of chiral susceptibility up, we can get a upper bound for this
analysis, which gives the pion mass at the critical pointmc

π . 45 MeV.
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Figure 4: Left: the disconnected part of the chiral susceptibility asa function ofβ . Right: the scaling fit to
the height of chiral susceptibility peaks.
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Figure 5: QCD phase diagram at vanishing baryon density in the quark mass plane.

5. Conclusion

We have performed 3-flavor QCD simulations using HISQ/tree action onNτ = 6 lattices with
five pion masses in the region of 80. mπ . 230 MeV. Through the study of quark chiral con-
densates and chiral susceptibilities, we found no evidenceof the first order chiral phase transition
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in this pion mass region. The upper bound of the pion mass at the critical point is estimated to
be around 45 MeV. It means that in the quark mass plane, the coordinate of the furthest critical
point from the origin in the 3-flavor QCD is at about (ms

phy/270,ms
phy/270), which is very far away

from the physical point at (ms
phy/27,ms

phy), as sketched in Fig. 5. Together with the results from
Ref. [14], our results suggest that the first order phase transition region is very small and thus the
critical surface swept by the chiral critical line at finite chemical potential has to be bent towards
to the physical point with a very large curvature to affect the nature of the real world at a small
chemical potential.
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