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The effect of an external magnetic field on the finite temperature transition of QCD is studied. We

measure thermodynamic observables including the quark condensates and susceptibilities and

the strange quark number susceptibility. We generate configurations at various values of the

quantized magnetic flux withNf = 2+ 1 flavors of stout smeared staggered quarks at physical

quark masses. We perform the renormalization of our observables and approach the continuum

limit with Nt = 6,8 and 10 lattices. We also check finite volume effects using various lattice

volumes. Our main result is that the transition temperaturesignificantly decreases with growing

magnetic field, and that the transition remains an analytic crossover up to our largest external field√
eB= 1 GeV.
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The finite temperature QCD transition in external magnetic fields G. Endr̋odi

1. Introduction

The response of the QCD vacuum to external (electro)magnetic fields is relevant for several phys-
ical situations, since very strong magnetic fields are thought to be present during the electroweak
phase transition in the early universe [1], in the interior of dense neutron stars called magnetars [2],
and in non-central heavy ion collisions [3]. In the latter case, although the external field has a very
short lifetime (of the order of 1 fm/c), the magnetic ‘impulse’ coincides with the generation of the
quark-gluon plasma and thus may have a significant effect on the properties of the transition.

The structure of the phase diagram of QCD in the magnetic field-temperature (B-T) plane has
been studied extensively in the past years. Calculations have been carried out within various low
energy effective models of QCD. Most of these models predictan increasing transition temperature
Tc and a strengthening of the transition with growingB, see, e.g. [4, 5, 6, 7]. However, the opposite
effect of a decreasing deconfinement transition temperature was predicted using chiral perturbation
theory for two quark flavors [8]. Moreover, in most of these model calculations chiral symmetry
breaking is enhanced with growingB through an increase in the chiral condensate [9, 10, 11]. On
the other hand, it was also conjectured that the running of the strong coupling in the presence of
magnetic fields may modify this magnetic catalysis, and eventurn the effect around to make the
dynamical mass decrease withB in some regions [12].

In a recent lattice simulation withNf = 2 flavors of staggered quarks [13] the chiral condensate
was observed to grow with the external field for any temperatureT in the transition region. The size
of this effect was however found to be different for different values ofT, resulting in an increase
in both the pseudocritical temperatureTc and the strength of the transition, being in qualitative
agreement with most of the model predictions. In this project our aim is to perform a similar
lattice study, but with improved gauge and smeared fermionic actions and withNf = 2+1 flavors
of quarks, at the physical pion mass. We explore a wide temperature region around the zero-
field pseudocritical temperatureTc(B= 0), for various values of the magnetic field, ranging up to√

eB∼ 1 GeV, i.e. covering the region that is phenomenologically interesting for noncentral heavy
ion collisions and for the evolution of the early universe. Our results are also published in a separate
paper [14].

2. Magnetic field on the lattice and observables

We consider a constant external magnetic fieldB = (0,0,B) in the z direction, which can be re-
alized by a vector potentialAy = Bx in the continuum. On the lattice such a vector potential can
be represented by complex phasesuν(n) ∈ U(1) that multiply theUν(n) ∈ SU(3) links of the lat-
tice [15, 16, 17, 13, 18],

uy(n) = eia2qBnx, ux(Nx−1,ny,nz,nt) = e−ia2qBNxny,

ux(n) = 1 for nx 6= Nx−1, uν(n) = 1 for ν 6∈ {x,y},
(2.1)

where the sites are labeled by integersn= (nx,ny,nz,nt), with nν = 0. . .Nν −1, andNν is the num-
ber of lattice points in the directionν . In this formulation we have periodic boundary conditions
in all spatial directions and the magnetic flux going throughany plaquette in thex− y plane is
constant.
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It is well known that in a finite box with periodic boundary conditions the magnetic flux is
quantized in terms of the area of the plane orthogonal to the external field [19, 20]. On the lattice
this leads to the quantization condition,

a2qB=
2πNb

NxNy
, Nb ∈Z, (2.2)

whereq is the smallest charge in the system – in our case the down quark chargeq = qd. We
note that the lattice magnetic field is periodic inNb with a period ofNxNy. In order to have an
unambiguous implementation we constrain the flux such that 0≤ Nb < NxNy/4. At larger values
of Nb the periodicity is expected to introduce saturation effects, like it was observed in [21, 22].

We derive our observables from the staggered partition function with three flavorsu,d and
s. The quark flavors are treated separately since their charges/masses are different:qu = −2qd =

−2qs, and we assumemu = md 6= ms. The dependence on the external field enters the partition
function only through the determinants, in the formqf B. Since we are concerned with a constant
external field we do not include any dynamics for the U(1) field introduced above. However our
approach is ‘dynamical’ (i.e. not quenched) in the sense that the magnetic field is taken into account
both in the configuration production and in the measurements.

Our observables include the chiral condensates and susceptibilities for the light flavors f =
u,d, and the strange quark number susceptibility,

ψ̄ψ f ≡
T
V

∂ logZ

∂mf
, χ f ≡

∂ψ̄ψ f

∂mf
, cs

2 ≡
T
V

1
T2

∂ 2 logZ

∂ µ2
s

, (2.3)

where we defined the spatial volume of the system asV = (Nsa)3 with Ns ≡ Nx = Ny = Nz. The
condensate will be denoted in the following by the first letter of the flavor name, e.g. ¯uu.

In order to approach the continuum limit, the renormalization of these observables has to be
carried out. We remark that the divergences to be canceled are independent of bothT andB [23, 14].
Therefore we can eliminate the additive divergences by subtracting theT = 0, B= 0 contribution.
Then we multiply by an appropriate power of the bare quark mass to cancel the multiplicative
divergences [24],

ψ̄ψ r
f (B,T) = mf [ψ̄ψ f (B,T)− ψ̄ψ f (0,0)]

1
m4

π
, χ r

f (B,T) = m2
f [χ f (B,T)− χ f (0,0)]

1
m4

π
. (2.4)

This procedure leads to a renormalized condensate that, forB= 0, is zero atT = 0 and approaches
a negative value asT is increased. Considering the strange quark number susceptibility, cs

2 needs
no renormalization (neither atB= 0 nor atB 6= 0) since it is connected to a conserved current.

In this study we use the tree-level improved Symanzik gauge action and stout smeared stag-
gered fermions; details about the action can be found in [25]. We generate lattice configurations
both atT = 0 andT > 0 with an exact RHMC algorithm, for various values of the gauge coupling
and the magnetic flux. For our finite temperature runs we have lattice configurations withNt = 6,8
and 10. Finite volume effects are studied on theNt = 6 ensemble using sets ofNs = 16, 24 and 32
lattices. The masses of the up, down and strange quarks are set to their physical values along the
line of constant physics (LCP) by fixing the ratiosfK/mπ and fK/mK to their experimental values.
The lattice spacing is determined byfK . Details of the determination of the LCP and the lattice
scale can be found in, e.g. [26]. Since the finite external field does not affect the lattice scale [14],
we use the lattice spacing measurements atT = 0 andB= 0 to set the scale also atT 6= 0 andB 6= 0.
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3. Chiral condensate at finiteT and B

Figure 1: The renormalized chiral conden-
sate as a function ofT for three different
values ofB for theNt = 6 lattices. The tran-
sition temperature shifts towards the left.

In figure 1 we plot the renormalized chiral conden-
sate as a function of the temperature for three values
of B. The transition temperature apparently decreases
with increasingB, thereby contradicting a vast number
of model calculations, see the summary given in the in-
troduction. Furthermore this observation also disagrees
with the lattice result of [13]. First of all, to check our
simulation code we reproduced the results of [13] with
an identical setting (i.e. same lattice sizes and quark
masses, no smearing and no improvement in the ac-
tion) at a couple of temperatures. Since we find a per-
fect agreement, we conclude that we are left with three
possible reasons for the discrepancy. First, the lattice
spacing of [13] is larger,a≈ 0.3 fm, and also an unim-
proved action is used, so lattice discretization errors maybe significant. Second, the present study
usesNf = 2+ 1 flavors as opposed to theNf = 2 of [13], and the pseudocritical temperature is
known to depend on the number of flavors [27], which may also introduce systematic differences
in the dependence on the external field. Third, the quark masses of [13] are larger than in the
present study, which can also cause drastic changes in thermodynamics – for example the nature of
the transition atB= 0 depends very strongly (and non-monotonically) on the quark masses.

On closer inspection, the differences between our results and those of [13] can actually be
traced back to the behavior of the chiral condensate as a function of B andT. While the authors
of [13] observed that at any temperature the condensate increases withB, we find that this depen-
dence is more complex and in the transition region the condensate decreases with growingB. As
already mentioned in the introduction, the possibility of such a decrease in the condensate withB
was also raised in low energy model calculations [12]. We findthat for three strange quarks this
complex dependence turns into a monotically increasing behavior for all temperatures [14], which
indicates that the response of the chiral condensate to the external field is very strongly influenced
by the quark masses. We summarize our findings as a) the dependence of the condensate on the
external field is non-monotonic and varies strongly with temperature, and b) as a result the pseu-
docritical temperature shifts to lower values at largeB as compared to theB= 0 case. The latter
observation is supported by a similarTc(B) dependence deduced from the chiral susceptibility, the
Polyakov loop and the strange susceptibility [14].

4. Transition strength and transition temperature

First we study the strength of the transition as a function ofthe external field. AtB= 0 the transition
is known to be a broad crossover [28], where the approximate order parameters like the chiral
condensate and the Polyakov loop change smoothly with the temperature, and no finite volume
scaling is visible in the observables.
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Figure 2: The chiral susceptibility as a function ofT measured on ourNt = 6 lattices for different spatial
volumes (left panel). Relative changes in theT-dependence ofχ r

u as measured onNt = 6 lattices (right
panel).

To properly determine the nature of the transition we searchfor finite volume scaling in our
observables. To this end we perform simulations at our largest magnetic field on theNt = 6 lattices
with Ns = 16,24 and 32. The largest lattice in the transition region corresponds to a box of linear
size∼ 7 fm. Here we keepeB/T2 fixed (and notB itself) as we are only interested in differences
between the various volumes. In the left panel of figure 2 the results for the chiral susceptibility are
shown as a function of the temperature foreB/T2 ≈ 82. The figure shows that ourNs = 16 results
agree within statistical errors with theNs = 24 andNs = 32 data, indicating that finite size errors
are small, compared to statistical errors. This independence on the volume also implies that the
transition at this high magnetic field is still an analytic crossover.

To further study how the strength of the transition changes we investigate the width of the
renormalized chiral susceptibility. In the right panel of figure 2 we plot the susceptibility divided by
its maximum value as a function ofT−Tc(B) for three different values of the magnetic field for the
Nt = 6 lattices. We find that the width of the peak is only mildly affected by the magnetic field. In
particular, the width of the peak at half maximum decreases from∼ 30(3) MeV to∼ 25(3) MeV as
the external field is increased from zero toeB= 1.05 GeV2. We find a very similar behavior on the
Nt = 8 and 10 lattices. From this analysis our final conclusions are that the width of the transition
decreases only mildly with increasing magnetic field, and asthe finite size scaling analysis has
shown, the transition remains an analytic crossover at least up to

√
eB∼ 1 GeV.

Next we study the observables as functions of the temperature to determine the pseudocritical
temperature. We search for the inflection point of the renormalized chiral condensate ¯uur + d̄dr

and the strange quark number susceptibilitycs
2. To carry out the continuum extrapolation, we fit

the results forTc(B) for all three lattice spacings (Nt = 6,8 and 10) together with anNt-dependent
polynomial function of order four of the formTc(B,Nt) = ∑4

i=0(ai + biN−2
t )Bi. This ensures the

scaling of the final results withN−2
t ∼ a2. We obtainχ2/dof. ≈ 0.5. . .1.2 indicating good fit

qualities. The results are plotted for the condensate and the strange susceptibility in figure 3.

As is clearly visible in the figure, both observables show that the pseudocritical temperature
decreaseswith growing external fieldB. We mention that the chiral susceptibility gives a similar
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Figure 3: The phase diagram of QCD in theB−T plane, determined from the renormalized chiral conden-
sate ¯uur + d̄dr (left panel) and the strange quark number susceptibilitycs

2 (right panel).

phase diagram, and that preliminary results about the Polyakov loop also indicate a decrease in
Tc(B) [14].

5. Summary

In this paper we studied the finite temperature transition ofQCD in the presence of external (elec-
tro)magnetic fields via lattice simulations at physical quark masses. The extrapolation to the con-
tinuum limit is carried out, and finite size effects are undercontrol. The results are relevant for the
description of both the evolution of the early universe and of noncentral heavy ion collisions.

We obtained the phase diagram of QCD in theB−T plane in the phenomenologically in-
teresting region of 0≤ eB. 1 GeV2. Performing a finite volume scaling study we found that
the transition remains an analytic crossover up to our largest magnetic fields, with the transition
width decreasing only mildly. This rules out the existence of a critical endpoint in theB−T phase
diagram beloweB= 1 GeV2.

Moreover, our results indicate that the transition temperature significantlydecreaseswith in-
creasingB. This result contradicts several model calculations present in the literature which predict
an increase inTc asB grows (see the summary in section 1). By comparing our magnetic fields to
the maximal fields that may be produced in noncentral heavy ion collisions we conclude that the de-
crease inTc is negligible for RHIC and may be up to 5−10 MeV for the LHC. Moreover, the effect
grows with the magnetic field, exceeding 20% forcs

2 at
√

eB= 1 GeV. This may have a significant
impact on the description of the QCD transition during the evolution of the early universe.
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