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Inter-quark potentials at finite temperature are derived from Nambu-Bethe-Salpeter (NBS) am-
plitudes. Employing the formalism developed by Laine et al. and Beraudo et al., we calculate
the Q̄Q potentials with finite quark masses in imaginary-time. The extracted potentials show
Coulomb plus linear behavior, and have moderate temperature dependence below Tc. On the
other hand, the potential considerably changes and becomes flat at long distance above Tc. Al-
though our potential is obtained in imaginary-time, it is expected that the obtained potential is a
natural extension of potentials from the Polyakov loop correlations.
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1. Introduction

Inter-quark potentials have physical implications of color confinement and hadron spectroscopy.
Regge slope indicates that the inter-quark potentials have the linear part with string tension σ '

1.3GeV at long distance. To understand the origin of the linear part is an important issue of the
hadron physics. On the other hand, at short distance, the inter-quark potentials are expected to have
the Coulomb interaction, which is suggested by the analogy between quarkonium and positronium.
Actually, the Coulomb plus linear potential reproduces the low-lying hadron spectra well in quark
models.

In Ref. [1], we propose a new method to extract the inter-quark potentials with finite quark
masses from lattice QCD. We utilize the Nambu-Bethe-Salpeter (NBS) wave functions of quark–
anti-quark systems for this purpose, which has been recently developed by HAL QCD Collabora-
tion to extract nuclear force on lattice [2]. The obtained inter-quark potentials show the Coulomb
plus linear behavior, and the string tension for heavy quark case is consistent with one derived
from Wilson loop. In Ref. [3], the authors perform detailed analyses of the inter-quark potential
of charmonium in 2+1 flavors at almost physical quark mass. They find the obtained potential is
very close to the inter-quark potential in non-relativistic potential model in Ref.[4]. From these
evidences, the method seems to work reasonably well.

At finite temperature, inter-quark potentials give important information for the dissociation
of heavy quarkonium. A famous signature of Quark-Gluon-Plasma (QGP), J/ψ suppression, is
closely related to the potential, for example. There are several studies of direct measurement of
heavy quarkonia on the lattice at finite temperature [5, 6, 7, 8]. However, in spite of much effort,
there is still no common view for the dissociation temperature of these quarkonia. In Ref. [5, 6, 7],
they calculate temporal correlators of quarkonia and reproduce spectral functions by using Maximal
Entropy Method (MEM). The dissociation temperature of J/ψ and ηc is T = (1.6-1.8)Tc , where Tc

is the critical temperature of QCD, in Ref. [6]. In Ref. [7], the dissociation of J/ψ and ηc occurs
very moderately, and even above 2Tc, there are still small peaks of these states. On the other hand,
there is another method of studying quarkonia above Tc, in which effective masses derived from the
qurakonium correlator are used [8, 9]. In this method, dissociation of J/ψ and ηc does not occur
even around 2Tc. Furthermore, a study from QCD sum rule using MEM [10] shows very early
dissociation of J/ψ . Under the circumstance, information of the inter-quark potential in heavy
quarkonium at finite temperature would help us to understand the dissociation problem.

In this paper, we study the inter-quark potential of heavy quarkonia at finite temperatures
from those NBS amplitudes. We extend the method obtaining inter-quark potentials from NBS
amplitudes at zero temperature to finite temperature systems. Our formalism is similar to that
proposed by Laine et al. [11] and Beraudo et al. [12], although ours is formulated with finite quark
masses.

The paper is organized as follows. In Sec. 2, the studies of Laine et al. and Beraudo et al. are
briefly reviewed and then our formalism is explained. In Sec. 3, we show the simulation setup and
numerical results of the potentials. Section 4 is devoted to discussion and summary of the paper.
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2. Formalism of extraction of inter-quark potentials with finite masses at finite
temperature

In this section, we briefly review the formalism to extract the inter-quark potentials of the vec-
tor channel with finite quark masses (J/ψ) at finite temperature, which was developed in Ref. [11]
and [12]. According to Ref. [11], the inter-quark potential at finite temperature is defined by
starting with the following quark–anti-quark correlation function:

Č>(t,~r) ≡ ∑
~x
〈q̄(t,~x +~r)γ µW (t,~x +~r; t,~x)q(t,~x)q̄(0,~0)γµ q(0,~0)〉 , (2.1)

where W~r[t,~x1; t0,~x0] is the Wilson line, which connects (t0,~x0) to (t1,~x1) along a straight path in
space-time. In the case of non-interacting heavy quark-anti-quark pair, the quark-anti-quark corre-
lation function in Eq. (2.1) satisfies the Schrödinger-type equation:

[

i∂t −

(

2M−
∇2

~r
M

+O(
1

M3 )

)]

Č>(t,~r) = 0 . (2.2)

With the presence of the interactions between quarks, one can expect that the quark-anti-quark cor-
relation function in Eq. (2.1) satisfies the Schrödinger-type equation with the proper temperature-
dependent inter-quark potential at finite temperature V (t,~r;T ):

[

i∂t −

(

2M−
∇2

~r
M

+V(t,~r;T )+O(
1

M3 )

)]

Č>(t,~r) = 0 . (2.3)

Using Eq. (2.3), the proper potentials V (t,~r;T ) are inversely extracted through the quark-anti-quark
correlation function C>(t,~r).

In Ref. [11], the static potential, which is the proper potential with infinitely heavy quarks, is
calculated through the Wilson loop in Euclidean space-time:

CE(τ ,~r) ≡
1

Nc
Tr〈W (0,~r;τ ,~r)W (τ ,~r;τ ,~0)W (τ ,~0;0,~0)W (0,~0;0,~r)〉 , (2.4)

within the Hard-Thermal Loop approximation. After the analytic continuation into Minkowski
space-time, one finds the static potential V>(t,~r;T ) through the Schrödinger-type equation, i∂tC>(t,r)=

V>(t,r;T )C>(t,r). Then, the static potential at the large-time limit, limt→∞ V>(t,r;T ), gives not
only a real part but also an imaginary part. The real part corresponds to Debye screening and
the imaginary part to Landau damping of low-frequency gauge fields that mediate interactions be-
tween the two heavy quarks. Thus, the definition of the potential at finite temperatures seems to be
adequate.

Also, in Ref. [12], the heavy quark potential in hot QED plasma is investigated in the Coulomb
gauge. The calculations of the potential in real-time direction at t → ∞ and imaginary-time direc-
tion at τ = β reveals that the real part of these potentials coincides, which correspond to Debye
screening. On the other hand, the imaginary part of the potential appears only in the real-time case.

In this study, the formalism in Refs. [11] and [12] is extended to the case of the inter-quark
potential with finite quark masses in the vector channel, where all the effects of the finite quark
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lattice size β a−1
s a−1

t κ mT=0
J/ψ

323 ×64,32,22,16 6.10 2.03GeV 8.12GeV 0.112 3.10GeV

Table 1: Parameter set used in this study. We adopt the parameters for clover action in Ref. [9].

masses are taken into account. In Euclidian space-time, the potential of the J/ψ channel at finite
temperature is extracted from the following Schrödinger-type equation with the finite quark masses,

[−∂τ +
∆

2µ
−V (τ ,~r;T )−2m]GE(τ ,~r) = 0, (2.5)

where µ is the reduced mass and GE(τ ,~r) is given by

GE(τ ,~r) ≡ ∑
~x
〈q̄(τ ,~r +~x)Γq(τ ,~x)∑

~y,~z
q̄(0,~y)Γq(0,~z)〉 , (2.6)

with the Coulomb gauge and Γ = γµ . Calculating the correlator in Eq. (2.6) on the lattice, V (τ ,~r;T )

is inversely extracted by Eq. (2.5). With this formalism, we can naively expect that the real part
of the real-time potential V (t,~r;T ) is obtained. Simulations for 1 � τ/a < β/2 with β ≡ 1/T are
shown in the next section.

3. Simulation setup and numerical results

In this section, we show the simulation setup. The setup used in this study is same as in Ref. [9]
except for lattice sizes. We adopt the anisotropic standard plaquette action for gauge fields,

SG =
β
Nc

1
γG

∑
s,i< j≤3

ReTr{1−Pi j(s)}+
β
Nc

γG ∑
s,i≤3

ReTr{1−Pi4(s)}, (3.1)

with β ≡ 2Nc/g2 = 6.10 and γG = 3.2103, where Pµν is the plaquette operator. The resulting lattice
spacing in spatial direction is a−1

s =2.03GeV and in temporal direction a−1
t =8.12GeV.

As for quarks, we adopt the anisotropic clover action, SF ≡ ∑x,y ψ̄(x)Kclover(x,y)ψ(y), where
Kclover(x,y) is defined as

Kclover(x,y) ≡δx,y −κt{(1− γ4)U4(x)δx+4̂,y +(1+ γ4)U
†
4 (x− 4̂)δx−4̂,y}

−κs ∑
i
{(r− γi)Ui(x)δx+î,y +(r + γi)U

†
i (x− î)δx−î,y}

−κscE ∑
i

σi4Fi4δx,y − rκscB ∑
i< j

σi jFi jδx,y. (3.2)

The improvement of the action is performed by the replacement, Ui(x)→Ui(x)/us,U4(x)→U4(x)/ut ,
where us = 0.8059 and ut = 0.9901 are the mean-field values of the spatial and the temporal link
variables in the setup, respectively. The requirement of keeping the Lorentz symmetry up to O(a2)

leads to r = at/as, cE = 1/(usu2
t ), cB = 1/u3

s and γF ≡ (ut κt)/(usκs) = as/at [9]. The hopping pa-
rameter in the isotropic lattice, κ = (1/(usκs)−2(γF +3r−4))−1 = 0.112, is adjusted to reproduce
the J/ψ mass mJ/ψ = 3.1GeV at zero temperature. The lattice sizes are 323 ×64,32,22,16, which
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Figure 1: [Upper figure] Temperature dependence of the inter-quark potential (red: 0.45Tc, blue: 0.88Tc,
magenta: 1.3Tc, black: 1.8Tc). [Lower figure] Magnified figure of the upper one for the potentials above Tc.

correspond to 0.45,0.8,1.3,1.8Tc , respectively. The configuration numbers used in this study are
Nconf = 30 for 323 ×64 and 323 ×32 lattices and Nconf = 50 for 323 ×22 and 323 ×16 lattices. To
calculate point separated correlation for quarks, we adopt Coulomb gauge fixing. The parameters
are summarized in Table 1.

In the upper figure of Fig. 1, we show the real part of an inter-quark potential derived from
Eq. (2.5) and (2.6). Red, blue, magenta and black symbols correspond to the data at T = 0.45,0.88,1.3
and 1.8Tc, respectively. Below Tc, the potential has moderate temperature dependence: they almost
coincide and have the linear confinement part with almost the same string tension at zero tempera-
ture. On the other hand, above Tc, the linear part becomes small. The lower figure of Fig. 1 is the
magnified figure of the upper one for the potentials above Tc. At 1.8Tc, the potential becomes flat at
long distance. At 1.3Tc, the small amount of linear part seems to remain. However, more statistics
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are needed to judge whether there remains linear part or not at 1.3Tc. The decrease of a linear part
of the potential may reflect the deconfinement transition, which is implemented in mesons at high
temperatures.

4. Discussion and summary

We have studied inter-quark potentials with finite quark masses at finite temperature from
NBS amplitudes. We employ the Schrödinger equation in Eq.(2.5) with the correlator in Eq.(2.6),
which is an extension of the study by Laine et al. and Beraudo et al. to the case of the finite
quark masses. The obtained potentials show moderate temperature dependence below Tc. On the
other hand, above Tc, the strong temperature dependence is observed. The linear confinement
potential vanishes already at T = 1.8Tc. Although the simulations with more statistics are needed,
it is, however, noticed that the potentials are directly obtained from the NBS amplitudes at finite
temperature and reflect the changes of the meson properties.

Since, in Ref. [12], they point out that the free energy of Q̄Q in Coulomb gauge, which is
the potential in imaginary-time direction at τ = β , coincides with the real part of a potential in
real-time direction at large t for QED case, as is mentioned in Sec. 2, we expect that the real part
of the real-time Q̄Q potential with finite quark masses is extracted. Therefore, we anticipate that
the potential in our formalism in heavy quark limit would coincide with that in real-time direction
with t → ∞, although the calculation is the QED case in [12].

On the other hand, the authors of Ref. [12] show that the information of soft collisions (Landau
damping) is lost in a potential in imaginary-time direction. To obtain the information, we have to
perform an analytic continuation of the correlator in Eq. (2.6) obtained in lattice QCD to real
time. Such an analytic continuation of numerical data is actually challenging. A possible way
of a calculation of such a real-time correlator in lattice QCD is proposed in Ref. [13], where the
authors define a real-time potential at finite temperature in the context of Wilson loop. The obtained
potential has not only a real part but also a imaginary part which would originate from the Landau
damping. If we perform analytic continuation of Euclidean correlator in Eq. (2.6) to real-time by
using spectral representation and MEM same as in Ref. [13], not only the real part but also the
imaginary part of the Q̄Q potentials with finite quark masses could be extracted.
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