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The complex Langevin method is a leading candidate for solving the sign problem occurring in

various physical situations, notably QCD at finite chemicalpotential. Its most vexing problem is

‘convergence to the wrong limit’, where the simulation gives a well defined, but incorrect, result.

Here, we first outline a formal justification of the method andidentify points at which it might

fail. From these we derive a condition that must be satisfied in order for correct results to be

obtained. We then apply these ideas to the three-dimensional SU(3) spin model at finite chemical

potential and show strong indications that complex Langevin dynamics yields correct results in

this theory.
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1. Introduction

Many systems of physical relevance have a complex action, QCD with a finite chemical poten-
tial is a particularly interesting example. Such theories are difficult to study numerically because
the weight is complex and therefore standard Markov chain Monte Carlo techniques based on a
probability interpretation cannot be applied; this is often called the sign problem [1]. The complex
Langevin equation (CLE) enjoyed a certain limited popularity after being proposed in the early
1980s [2, 3] because it can, in principle, avoid the sign problem since it does not rely on impor-
tance sampling. In some cases, complex Langevin simulations have been found to be numerically
unstable due to runaway solutions but this can be cured by use of an adaptive stepsize [4]. A more
serious and vexing issue is convergence to the wrong limit, where the simulationgives well defined
results, but when compared with known values are found to be incorrect.It is this problem that we
shall focus on here.

In Section 2 we briefly cover a formal argument for the correctness of the CLE and identify
points at which it might fail. By studying the long time evolution of observables withrespect
to real and complex measures, we derive a criterion which must be satisfiedin order for correct
results to be obtained [5, 6]. In Section 3 these ideas are applied to the SU(3) spin model at finite
chemical potential [7, 8, 9]. A comparison with imaginary chemical potential shows that the CLE
works correctly in the regionµ2 ∼ 0. An analysis of the criterion with a larger chemical potential
supports the claim that in this case complex Langevin dynamics can be trusted [10].

2. Criteria for correctness

The central object of interest is the expectation value of a particular observable, given by

〈O〉 =

∫

O(x)e−S(x)dx
∫

e−S(x)dx
, (2.1)

where for notational simplicity we use a single real degree of freedom,x. The actionS(x) is
complex, preventing a probability interpretation of the measure and ruling outmethods based on
importance sampling. The complex Langevin equation is

dx
dt

= Kx +
√

NRηR,
dy
dt

= Ky +
√

NIηI , (2.2)

where the real variable is analytically continued asx→ z= x+ iy. The drift terms are given by

Kx = Re
dS(x)

dx

∣

∣

∣

∣

x→x+iy
, Ky = Im

dS(x)
dx

∣

∣

∣

∣

x→x+iy
, (2.3)

and the two noise termsηR, ηI are independent Gaussian random numbers with variance 2 and nor-
malisationNI ≥ 0 andNR−NI = 1. A numerical simulation can then be implemented by integrating
these equations to large timest → ∞.

The resulting dynamics is described by a dual Fokker-Planck equation for the evolution of the
probability densityP(x,y; t),

∂
∂ t

P(x,y; t) = LTP(x,y; t), (2.4)
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with the operator

LT = ∇x[NR∇x−Kx]+∇y[NI∇y−Ky]. (2.5)

To understand the time evolution of the real densityP(x,y; t) one must also examine the evo-
lution of the complex densityρ(x; t), determined by

∂
∂ t

ρ(x; t) = LT
0 ρ(x; t). (2.6)

Here, the complex Fokker-Planck operatorLT
0 is

LT
0 = ∇x[∇x +∇xS(x)]. (2.7)

This equation hasρ(x;∞) ∝ exp[−S(x)] as a stationary solution, which is expected to be unique.
Numerical studies (where feasible) of Eq. (2.6) confirm this to be true; in fact, convergence to this
distribution seems exponentially fast.

Expectation values with respect to the two densities can now be defined as

〈O〉P(t) =

∫

O(x+ iy)P(x,y; t)dxdy
∫

P(x,y; t)dxdy
, 〈O〉ρ(t) =

∫

O(x)ρ(x; t)dx
∫

ρ(x; t)dx
. (2.8)

The result that one would like to show is

〈O〉P(t) = 〈O〉ρ(t), (2.9)

if the initial conditions〈O〉P(0) = 〈O〉ρ(0) match, which is assured provided

P(x,y;0) = ρ(x;0)δ (y). (2.10)

One expects the dependence on the initial conditions to vanish in the limitt → ∞ by ergodicity.
To establish a connection between the expectation values with respect toP andρ, one moves

the time evolution from the densities to the observables. Since we are only interested in functions
of z= x+ iy (holomorphic functions), we may act with the Langevin operator

L̃ = [∇z− (∇zS(z))]∇z,

whose action on holomorphic functions agrees with that ofL.
We now usẽL to evolve observables according to the equation

∂
∂ t

O(z; t) = L̃O(z; t), (2.11)

which is formally solved by

O(z; t) = exp[tL̃]O(z).

Due to the fact thatL andL̃ agree on holomorphic functions, the tilde may be dropped.
To examine the evolution we define the function

F(t,τ) =
∫

P(x,y; t − τ)O(x+ iy;τ)dxdy, (2.12)
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and observe thatF(t,τ) interpolates between the two expectation values:

F(t,0) = 〈O〉P(t), F(t, t) = 〈O〉ρ(t). (2.13)

The first can be seen easily, while the second makes use of the initial conditions and

F(t, t) =
∫

P(x,y;0)
(

etLO
)

(x+ iy;0)dxdy

=
∫

ρ(x;0)
(

etL0O
)

(x;0)dx=
∫

O(x;0)
(

etLT
0 ρ

)

(x;0)dx= 〈O〉ρ(t), (2.14)

where it is only necessary to assume that integration by parts inx does not produce any boundary
terms.

The desired result (2.9) follows ifF(t,τ) is independent ofτ. To check this, we need theτ
derivative to vanish,

∂
∂τ

F(t,τ) = −
∫

(

LTP(x,y; t − τ)
)

O(x+ iy;τ)dxdy+
∫

P(x,y; t − τ)LO(x+ iy;τ)dxdy. (2.15)

Integration by parts,if applicable without boundary terms at infinity, then shows that the two terms
cancel and thereforeF(t,τ) is independent ofτ, irrespective ofNI .

This is therefore a point at which the formal argument might fail: if the decayof the product

P(x,y; t − τ)O(x+ iy;τ)

and its derivatives is insufficient for integration by parts without boundary terms.
In Ref. [6] a study of the U(1) one-link model found that theτ-derivative is largest atτ = 0.

This motivates the superficially weaker condition

lim
t→∞

∂
∂ t

F(t,τ)

∣

∣

∣

∣

τ=0
= 0. (2.16)

This modification to the condition is still sufficient for correctness if it holds for a sufficiently large
set of suitably chosen observables. Taking the limitt → ∞ in Eq. (2.15) causes the first contribu-
tion to vanish because of the equilibrium condition,LTP(x,y;∞) = 0. Therefore, the criterion for
correctness reduces to

EO ≡
∫

P(x,y;∞)LO(x+ iy,0)dxdy= 〈LO〉 = 0. (2.17)

This is fairly simple to check for a given observable, but it is in fact a strong statement since it
must holdfor all observables. Therefore, Eq. (2.17) really represents an infinite tower of identities
which must all be satisfied. In practice it can be checked for a small numberof observables, still
yielding a necessary criterion [6].

3. SU(3) spin model

Motivated by recent work [9] (for related models see e.g. Ref. [11]),we re-examine the three-
dimensional SU(3) spin model at finite chemical potential, for which promising results with com-
plex Langevin dynamics have been obtained in earlier studies [7, 8]. The action is formed from
three contributions

S= SB +SF +SH , (3.1)
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which read

SB = −β ∑
x,ν

(

TrUxTrU−1
x+ν̂ +TrU−1

x TrUx+ν̂
)

, (3.2)

SF = −h∑
x

(

eµTrUx +e−µTrU−1
x

)

, (3.3)

SH = −∑
x

log

[

sin2
(

φ1x−φ2x

2

)

sin2
(

2φ1x +φ2x

2

)

sin2
(

φ1x +2φ2x

2

)]

. (3.4)

The final component,SH , originates from the Haar measure introduced by diagonalisingU in terms
of angles,

U = diag(eiφ1,eiφ2,e−i(φ1+φ2)).

The action is complex due to the “heavy fermion” contribution,S∗F(µ) = SF(−µ∗). For small
h the theory has a confined and deconfined phase separated by a first order transition line at small
µ, turning into a crossover at largerµ (see Figure 1, left) [7].

µ

β

0.12 0.125 0.13 0.135 0.14

β
0

0.5

1

1.5

<
 T

r(
U

 +
 U

-1
)/

2
 >

µ=0, h=0.02, 10
3

Figure 1: Left: sketch of the phase diagram at smallh. Right: 〈Tr(U +U−1)/2〉 as a function ofβ at µ = 0,
h = 0.02 on a 103 lattice.

Figure 1 (right) shows the transition as a function ofβ at µ = 0, using the observable〈Tr(U +

U−1)/2〉. Note that atµ = 0, 〈TrU〉 = 〈TrU−1〉, but atµ2 > 0 they differ. Since observables that
are even inµ should be continuous acrossµ2 = 0, we also perform simulations with an imaginary
chemical potential, for which the action is real and simulations using standard techniques can be
used (we use real Langevin dynamics). A comparison with complex Langevin data should therefore
show even observables to be continuous acrossµ2 = 0. In Figure 2 the observable〈Tr(U +U−1)/2〉
is plotted. The data from complex Langevin dynamics withµ2 ≥ 0 is consistent with those from
real Langevin dynamics withµ2 ≤ 0 in both phases, including the critical region, suggesting that
complex Langevin dynamics is working correctly here. This is in contrast to the case of the XY
model recently studied using complex Langevin dynamics, where correct results were obtained in
only part of the phase diagram [12].

At larger values ofµ2, one can no longer rely on analytical continuation to justify the results.
Instead, we assess them using the criteria developed above and compute〈LO〉 for O = TrU . The
outcome is shown in Figure 3 for real chemical potential (left) and also in the phase-quenched
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Figure 2: 〈Tr(U +U−1)/2〉 as a function ofµ2 for variousβ values. Forµ2 < 0 (imaginaryµ) the action
is real and real Langevin dynamics is used; whenµ2 > 0 complex Langevin is necessary.
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(a) Complex Langevin dynamics
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(b) Phase-quenched using real Langevin dynamics

Figure 3: Langevin stepsize dependence of the correctness criterionfor TrU with complex Langevin dy-
namics (left) and in the phase-quenched approximation (right) using real Langevin dynamics. The points for
µ = 3.5 are shifted horizontally for clarity (β = 0.12,h = 0.02 and lattice volume 43).

theory (right), usingµ = 3 and 3.5. In the phase-quenched theory, the action is real and we use real
Langevin dynamics. The figures indicate that at nonzero stepsize the criterion is not satisfied, both
for real and complex Langevin dynamics, but that in the limitε → 0 it is satisfied.

We find therefore that in this model the test is passed successfully. Moreover, finite stepsize
corrections can be quantified by the deviation of〈LO〉 from zero. We are currently extending
this analysis and have implemented a higher-order algorithm to eliminate the effects of finite step-
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size [10].

4. Conclusions

Complex Langevin dynamics can in principle be applied where the sign problemprevents the
use of importance sampling. An analysis of the long-time evolution of real and complex measures
using the Fokker-Planck equation shows that the correct stationary solution exists. However, if
the decay of the distributionP(x,y; t) is insufficient to allow integration by parts without boundary
terms, convergence to the wrong limit can occur. In practice, this can be diagnosed by testing the
condition that〈LO〉 = 0 for a suitably large set of observables in the limit of vanishing stepsize. In
the case that the criterion is not satisfied, complex Langevin dynamics fails.

An analysis of the SU(3) spin model shows that the criterion for correctness is satisfied, justi-
fying the claim that complex Langevin dynamics works correctly with this model. This is corrob-
orated by analytic continuation from imaginary chemical potential in the region of small chemical
potential

∣

∣µ2
∣

∣ . 1, which shows that data for observables even inµ are continuous between results
from a real action whenµ2 ≤ 0 and a complex action withµ2 > 0. A further and more detailed
study of the criterion and stepsize dependence is in progress [10].
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