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1. Introduction

It is by now well established that the high temperature QCD Dirac spectrum has a remarkable
feature, a transition from localized to delocalized modes [1]-[3]. It seems to be a generic feature
of non-Abelian gauge theories in four dimensions that at high temperature, where chiral symmetry
is restored, the lowest part of the Dirac spectrum consists of localized modes exhibiting Poisson
statistics. Higher up in the spectrum there is a cross-over to delocalized modes and random matrix
statistics persisting throughout the bulk of the spectrum.This behavior, reminiscent of Anderson
localization, was first seen in the quenchedSU(2) theory with the overlap Dirac operator [2] and
later with the staggered Dirac operator [3].

The detailed mechanism behind quark localization is still not known. In particular, it is not
clear whether there are any easily identifiable gauge field configurations that are capable of binding
and localizing the lowest quark eigenmodes. In the present paper, which is mostly based on Ref. [4],
we present some new findings concerning the nature of these gauge field objects. The lattice data
we use in support of these results come from various simulations including overlap and staggered
Dirac spectra in quenchedSU(2) gauge backgrounds and stout smeared staggered spectra inSU(3)

backgrounds with 2+1 flavors of dynamical quarks. The results of the dynamical simulations have
not been published yet, some preliminary results appear in the presentation by F. Pittler at this
Conference.

2. Correlation between overlap and staggered modes

If the low Dirac modes are localized on specific gauge objectsthen in a given gauge field back-
ground one expects the localized modes to occur around similar locations irrespective of the par-
ticular discretization of the Dirac operator. To test this we compared the lowest twelve eigenmodes
of the staggered and the overlap Dirac operator [6] on the same set of gauge field backgrounds. For
quantifying the spatial overlap between two eigenmodes we defined the quantity

I = V ∑
x

|φstag(x)|
2 |ψov(x)|

2 (2.1)

that we callinterlocalization. For non-overlapping modesI can be close to zero while for exactly
identical modesI coincides with the inverse of the participation ratio. Herethe eigenmodes are
always assumed to be normalized. To have a meaningful comparison we first paired the lowest
overlap eigenmode with the staggered mode that had the largest interlocalization with it. Then
the second lowest overlap mode was paired with the remainingstaggered mode with maximal
interlocalization with it and so on. After this pairing was done configuration by configuration, we
computed the average interlocalization for the lowest twelve overlap modes and the corresponding
staggered modes. In Figure 1 we plot this quantity as a function of the overlap eigenvalue both in
theQ = 0 and the|Q| = 1 topological sectors.

Indeed, in both topological sectors the lowest staggered and overlap eigenmodes have sub-
stantial overlaps that diminishes higher up in the spectrum. We note that putting Gaussian random
amplitudes for the two vectors yields an interlocalizationof unity. We can thus conclude that there
are some objects in the gauge configurations that bind localized eigenmodes of both the overlap
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Figure 1: The average interlocalization (see Eq. (2.1)) of the lowestoverlap and staggered eigenmodes as
a function of the overlap eigenvalue in the topological charge sectorsQ = 0 and|Q| = 1

and the staggered Dirac operators. We note here that similarities between overlap and staggered
spectra had already been noted for the Schwinger model [7] and for QCD [8], but in our case the
similarity also extends to the spatial structure of the eigenmodes.

3. Scaling in the continuum limit

Since the lowest eigenmodes are localized to within a few lattice spacings one might be in-
clined to identify these gauge field objects with some sort of“dislocations”, unusually large fluctu-
ations in the gauge fields on the scale of the lattice spacing.To explore this possibility we repeated
the simulations on three finer grids and, based on the participation ratio, computed the linear size
of the localized eigenmodes [5]. All these simulations weredone at the same physical temperature
(T = 2.6Tc) and in spatial boxes of the same physical size with the lattice spacing set by the crit-
ical temperature. The results are shown in Figure 2 where we plot the eigenvalue size in units of
the inverse temperature. A priori it is not clear how to extrapolate this quantity to the continuum
limit, but to guide the eye we included a linear extrapolation. It is obvious that using any sensible
extrapolation to the continuum limit yields a non-zero value, in fact a number of order unity. This
clearly rules out dislocations as candidates for binding the localized modes. Moreover, it seems
that the spatial size of the localized modes is set by the box size in the temporal direction.

To obtain further information concerning the nature of the gauge objects binding the localized
modes we can also look at their density and in particular how that scales in the continuum limit.
Since there is no sharp boundary between the localized and the delocalized modes in the spectrum,
it is not straightforward to count the number of localized modes and to define their density. For in-
stance in terms of the level spacing distribution,P(s), the exponential distribution,P(s) = exp(−s),
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Figure 2: The average linear size of the localized low eigenmodes of the overlap Dirac operator as a
function of the lattice spacing. The eigenmode size is measured in units if inverse temperature.

characterizing localized modes continuously changes intothe Wigner surmise as we go up in the
spectrum and reach the regime of delocalized modes. If this path of deformation is universal,
which seems to be the case here, one can arbitrarily choose a “standard” distribution somewhere
between the exponential and the Wigner surmise. One can thencall those eigenmodes localized
that are below the point in the spectrum where the level spacing distribution reaches this standard
“in-between” distribution.

In Figure 3 we show the unfolded level spacing distribution computed from eigenvalues be-
tween number 10 and 20 of the staggered Dirac operator in gauge field backgrounds generated
with 2+1 flavors of dynamical fermions with physical masses using the action in Ref. [9]. The
three curves correspond to three different ensembles withNt = 4,6 and 8, at the same physical
temperature and with the same physical spatial box size. Thetwo curved lines indicate the expo-
nential and the unitary Wigner surmise distributions observed in the lowest part and the bulk of
the spectrum. The histograms are exactly on top of one another illustrating that the deformation
of the distribution occurs along the same universal path regardless of the lattice spacing. Since the
matching histograms correspond to the same slice of the spectrum (between eigenvalues 10 and
20) in all three cases, we can conclude that according to our definition all these ensembles have the
same number of localized modes per configuration. This in turn implies that the physical density
of localized modes is also the same since the physical three-volumes of the ensembles were chosen
to be identical.

We already know that localized low Dirac modes are bound to some gauge objects that have
a fixed physical size and physical density in the continuum limit. It would be tempting to identify
these as finite temperature topological objects, calorons with their constituent monopoles. Based
on the zero modes of the overlap Dirac operator on these gaugebackgrounds we can estimate that
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Figure 3: The unfolded level spacing distribution computed from the eigenvalues between the 10th and
20th. The histograms correspond to three ensembles with the samephysical parameters, differing only in
the lattice spacing. The two curved lines indicate the exponential and unitary Wigner surmise distributions
corresponding to the lowest part and the bulk of the spectrum.

at this temperature there are on average about 0.01 topological objects (calorons or anti-calorons)
per cubic fermi. This estimate also depends on the assumption that since the gas of topological
objects is dilute, they are uncorrelated. On the other hand,the density of localized modes turns
out to be about 1 per cubic fermi. The two orders of magnitude discrepancy between the density
of calorons and localized modes makes it impossible that a dilute gas of topological objects can
explain the localized Dirac modes.

4. Connection to Polyakov loops

To gain further intuition concerning the origin of these lowDirac modes we note that the
“thinning out” of Dirac modes around zero at high temperature, needed for chiral restoration, can
be qualitatively understood by considering the lowest Matsubara frequency. Indeed, due to the
anti-periodic temporal boundary condition the lowest freequark modes are shifted away from zero
by an amount∝ T. If the gauge field is “turned on” the effective temporal boundary condition for
the quarks is the combination of the anti-periodic boundarycondition and the Polyakov loop. At
high temperature the latter has a positive real expectationvalue, however, it can locally fluctuate.
Fluctuations of the Polyakov loop can in principle locally lower the effective Matsubara frequency
and shift some Dirac eigenvalues towards zero. If this is thecase one expects the lowest eigenmodes
to be localized at places where the Polyakov loop has large fluctuations.

Whether that is the case can be tested by comparing the weighted average of the Polyakov
loop to the simple average. We choose the weight on each site to be the magnitude of a normalized
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Figure 4: The weighted average of the Polyakov loop versus the overlapeigenmode the magnitude of
which was used for the weighting. The weighted average is normalized by the simple average.

Dirac wave function on that site. In this way to each Dirac eigenmode we can associate a weighted
Polyakov loop with the formula

Pm = ∑
x

P(x)|ψm(x)|2. (4.1)

In Figure 4 we plot this quantity normalized by the simple average Polyakov loop for the
pureSU(2) gauge theory for the first few overlap eigenvalues. It is clear that for the low Dirac
modes the weighted average is significantly lower than the simple average. This demonstrates
that the localized Dirac modes are indeed peaked at locations where the Polyakov loop has large
local fluctuations towards smaller and even negative valuesthat significantly lower the effective
Matsubara frequency.

To test the validity of this picture in a more quantitative fashion we also explored an effective
random matrix model inspired by this picture. Splitting theDirac operator into a temporal and a
spatial part we choose a basis that diagonalizes the temporal part with diagonal matrix elements

λ (x)a = sin
π −φ(x)

Nt
, (4.2)

whereλ (x) is the effective local lattice Matsubara frequency andφ(x) corresponds to the local
phase of the Polyakov loop atx. The extra phaseπ in this formula represents the anti-periodic
temporal boundary condition. We further assume that this three-dimensional array of local Mat-
subara modes interact through nearest neighbor interactions in all spatial directions. These random
spatial interactions are meant to capture the effect of spatial gauge couplings in the Dirac operator.
This sparse random matrix model has a dimensionally reducedthree-dimensional structure and is
analogous to the Anderson model based on the tight binding approximation. The random on-site
terms are the local Matsubara frequencies and the nearest neighbor hopping terms are the effective
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interaction terms between neighboring Matsubara modes. This model has only a few parameters
to be fixed. We experimented with some parameter sets inspired by actual lattice data and found
that for a range of parameters this random matrix ensemble reproduces the qualitative features of
the lattice Dirac operator. The lowest part of the spectrum consists of localized modes with expo-
nentially distributed nearest neighbor level spacings andthe bulk of the spectrum has delocalized
modes with random matrix statistics. For details we refer the reader to Ref. [4].

5. Conclusions

In the present paper we studied how the localization of the lowest quark modes occurs in
QCD at high temperature. We showed that the location of the eigenmodes is robust with respect
to different discretizations of the Dirac operator. We demonstrated this by comparing staggered
and overlap eigenmodes on the same gauge backgrounds. Usingsimulations with four different
lattice spacings we found that the physical size of the localized modes has a non-zero continuum
limit which is of the order of the inverse temperature. This implies that localized modes are not
bound to dislocations, rather they are connected to gauge field objects the extension of which is
controlled by the temporal box size. We further demonstrated that the physical density of these
objects does not depend on the lattice spacing. Their density turned out to be about two orders
of magnitude larger than the density of topological objects. We found strong correlations between
the locations of low Dirac modes and those of large fluctuations of the Polyakov loop. Based on
that we proposed a dimensionally reduced sparse random matrix model of localization. It would
be interesting to explicitly identify the gauge field objects responsible for localization. Monopoles
and dyons are good candidates for that, but some non-trivialcorrelations between different objects
would be needed [10],[11].
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