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We report on a lattice investigation of heavy quark diffusion within pure SU(3) plasma above the

deconfinement transition, with the quarks treated to leading order in the heavy mass expansion.

Using a multilevel algorithm, several volumes and lattice spacings, as well as tree-level improve-

ment and perturbative renormalization, we measure the relevant “colour-electric” Euclidean cor-

relator, finding that it clearly exceeds its perturbative counterpart. Even without analytic continu-

ation, this suggests that at temperatures just above the critical one, non-perturbative interactions

felt by the heavy quarks are stronger than within the weak-coupling expansion. After introducing

rough modelling of the spectral shape, diffusion coefficients down toD ∼ 0.5/T appear possible.
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T/Tc β Nτ Ns Nconf

1.5 6.872 16 32 200
48 75
64 50

7.192 24 64 338
2.25 7.192 16 48 125

64 50
7.457 24 64 504

T/Tc β Nτ Ns Nconf

3.0 7.457 16 48 127
64 50

7.793 24 64 469
≫ 1 8.426 24 64 44

9.794 51
20.0 51
30.0 11

Table 1: Overview of the parameter values simulated and statistics accumulated (β = 2Nc/g2).

1. Introduction

As was previously observed at the RHIC and recently confirmedby the heavy ion program
at the LHC [1], jets containingc or b quarks (D or B mesons) get effectively “quenched”, mean-
ing that they experience a rapid kinetic equilibration withthe thermal medium generated in the
collision. The rate at which this happens appears to be much faster than at leading order of the
weak-coupling expansion [2]. A next-to-leading order analysis suggests that indeed there are large
corrections from higher orders [3], underlining the importance of a non-perturbative study. For the
charm quark a direct measurement of the heavy quark diffusion coefficient from the current-current
correlator is under way [4] (with techniques developed for light quarks in ref. [5]), but given the
systematic uncertainties involved as well as the fact that the bottom quark case is also of interest, it
appears worthwhile to contrast this with an alternative approach, based on Heavy Quark Effective
Theory (HQET) and valid in the large-mass limit [6]. Following a previous investigation, which
demonstrated the principal applicability of the method [7], we report here on progress towards a
removal of lattice artifacts and a physical interpretationof the results.

2. Observable

Heavy quarks carry a colour charge and, whenever there are gauge fields present, are therefore
subject to a coloured Lorentz force. Like with other transport coefficients the corresponding “low-
energy constants” are easiest to define at vanishing three-momentum; then the Lorentz-force is
proportional to the electric field strength. This leads to a “colour-electric correlator” [8, 6],

GE(τ)≡−
1
3

3

∑
i=1

〈

ReTr
[

U( 1
T ;τ)gEi(τ ,0)U(τ ;0)gEi(0,0)

]〉

〈

ReTr[U( 1
T ;0)]

〉 , (2.1)

wheregEi denotes the colour-electric field,T the temperature, andU(τ2;τ1) a Wilson line in Eu-
clidean time direction. If the corresponding spectral function, ρE, can be extracted [9], then the
“momentum diffusion coefficient”, often denoted byκ , can be obtained from

κ = lim
ω→0

2T ρE(ω)

ω
. (2.2)

According to non-relativistic linear response relations (valid for M ≫ πT , whereM stands for a
heavy quark pole mass) the corresponding “diffusion coefficient” is given byD = 2T 2/κ .
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Figure 1: Left: Part of a representative Monte Carlo history. Right: The corresponding averages.

3. How to get a signal

In order to carry out a measurement (our parameter values, referring to the standard Wilson
gauge action, are listed in table 1), eq. (2.1) needs to be discretized; we follow the proposal of
ref. [6], viz.

. (3.1)

We make use of two special techniques: the “thick” links in between the electric fields are handled
through the link integration method [10, 11], whereas the time intervals of width 3a, enclosing the
electric fields, are subjected to∼ 10 extra updates with fixed boundary conditions, according to
the multilevel philosophy [12] (a previous application at finite temperatures can be found e.g. in
ref. [13]). It depends on the parameters which of the two techniques helps more, but when both are
combined, we always get a signal; this is illustrated in fig. 1. In the right panel, the results have
been normalized through [6]

Gnorm(τT ) ≡
GLO

cont(τT )
g2CF

= π2T 4
[

cos2(πτT )

sin4(πτT )
+

1

3sin2(πτT )

]

, CF ≡
N2

c −1
2Nc

. (3.2)

4. Calibration and volume dependence

In order to crosscheck the code, as well as for later reference, we have computed the correlator
of eq. (3.1) to leading order in lattice perturbation theory. The result reads

GLO
lat (τT ) =

g2CF

3a4

π
∫

−π

d3q
(2π)3

eq̄Nτ (1−τT)+eq̄Nτ τT

eq̄Nτ −1
q̃2

sinhq̄
, (4.1)

q̄ ≡ 2 arsinh
( q̃

2

)

, q̃2 ≡
3

∑
i=1

4sin2
(qi

2

)

, Q̃2 ≡
4

∑
i=1

4sin2
(qi

2

)

, (4.2)
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Figure 2: Left: A crosscheck in the weak-coupling limit. Right: Volume dependence at two temperatures.

which for Nτ → ∞, a → 0 goes over into the continuum resultGLO
cont(τT ) of eq. (3.2). In fig. 2(left)

a comparison of eq. (4.1) with lattice measurements at very large values ofβ = 2Nc/g2 is shown,
and we observe agreement in the weak-coupling limit.

Proceeding towards physical measurements, fig. 2(right) shows results at various spatial vol-
umes. At the current level of resolution, finite-volume effects are seen to be below statistical errors.

5. Discretization effects

An important systematic error originates from a finite lattice spacing (a 6= 0). A memory
limitation currently prohibits us from increasing the spatial volume beyond 643, but in view of
the very small volume-dependence seen in fig. 2(right), a comparison of the lattices 483 ×16 and
643×24 (the latter approximating the desired 723×24) at the same temperature allows us to test for
the existence of scaling violations. Results at two different temperatures are shown in fig. 3(left),
and it is clear that effects related to a finite lattice spacing need to be brought under control.

Fortunately, the situation can be all but rectified through “tree-level improvement” [14, 15].
Using eqs. (3.2), (4.1) to determineτT from

GLO
cont(τT ) = GLO

lat (τT ) , (5.1)

the pairs(τT,τT) allow us to define the tree-level improved data from the measured correlator
Glat(τT ) according to

Gimp(τT )≡ Glat(τT) . (5.2)

The results are shown in fig. 3(right) and look much nicer thanthose in fig. 3(left).
There are discretization effects at loop levels as well. Following the general Symanzik philoso-

phy [16] as well as the derivation of the colour-electric correlator in ref. [6], we may expect that the
renormalization factor is related to the coefficient of the kinetic energy operator in lattice HQET,
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Figure 3: Lattice spacing dependence at fixedT without (left) and with (right) tree-level improvement.

let us denote it byc2, which needs to be appropriately tuned to match to continuum. In perturbation
theory the value can be determined by computing the heavy quark self-energy and choosingc2 so
as to cancel 1-loop effects specific to lattice regularization. Making use of techniques introduced
in ref. [17], we find

c2 ≈ 1−
g2CF

2

{ π
∫

−π

d3q
(2π)3

1
q̃2 −

2
3

π
∫

−π

d4q
(2π)4

1

Q̃2

}

≈ 1−
0.59777

β
,

with q̃2,Q̃2 defined in eq. (4.2). The renormalization factor is thenc2
2 ≈ 0.83...0.85, i.e. quite

modest. The results obtained after this correction (≡ Gimp,Z) are shown in fig. 4(left). Of course,
systematic (non-perturbative) renormalization would be highly desirable [18].

6. Physical interpretation

The correlatorGE was computed at next-to-leading order (NLO) in continuum inref. [19]. A
comparison with our lattice results, improved and renormalized as explained above, is shown in
fig. 4(left). We observe a clear enhancement over the NLO prediction over a wide Euclidean time
interval. Subtracting the two results, one could in principle attempt a model-independent analytic
continuation of the non-perturbative surplus, for instance along the lines of ref. [20]. Unfortunately,
at the current stage, our resolution is not sufficient (∼ 10−3) for this task. Therefore we resort to a
rough model-dependent interpretation of the data in the following.

Most transport coefficients are related to quantities whichare conserved in the free limit, and
therefore arise in connection with a narrow transport peak.This yields a contribution to the Eu-
clidean correlator which is almost constant inτ . Since the full Euclidean correlator diverges at
short distances and is essentially perturbative there, ratios such asGlat/GNLO should only be en-
hanced around the middle of the Euclidean time interval (cf.e.g. refs. [4, 5]). This is clearlynot
the case in fig. 4(left), and a narrow transport peak can be excluded, as expected [6, 19].
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Figure 4: Left: Comparison of lattice with the NLO weak-coupling expansion [19]. Right: Like on the left
but normalized to the model of eq. (6.1). Closed symbols correspond toκ = 4T 3, open ones toT = 2.25Tc.

For a potentially more realistic model, we take inspirationfrom non-perturbative computations
of the colour-electric correlator in other theories, one ofthem strongly coupledN = 4 Super-Yang-
Mills in the large-Nc limit [8, 21], another classical lattice gauge theory withNc = 3 [22]. Both
suggestρE(ω)/ω to essentially flatten off below some frequency scale. Therefore, we define

ρmodel(ω)≡ max
{

ρNLO(ω),
ωκ
2T

}

, (6.1)

with the free parameterκ representing directly the momentum diffusion coefficient according to
eq. (2.2), and compute the corresponding Euclidean correlator from

Gmodel(τ)≡
∫ ∞

0

dω
π

ρmodel(ω)
cosh

(

1
2 − τT

) ω
T

sinh ω
2T

. (6.2)

Results are shown in fig. 4(right). We observe that despite extending its influence to larger fre-
quencies than a narrow transport peak, the model does not capture the full shape of the Euclidean
correlator; probably, extra “power” needs to be added toρ(ω) at even larger frequencies.

Nevertheless, aiming at a match around the middle of the Euclidean time interval, we can
read from fig. 4(right) thatκ ∼ 4T 3 at T = 1.5Tc; κ ∼ 3.5T 3 at T = 2.25Tc; and κ ∼ 2.5T 3 at
T = 3.0Tc. The NLO weak-coupling expansion yields valuesκ ∼ 2T 3 [3] in this temperature range,
and classical lattice gauge theory suggests that this couldbe an underestimate [22]. Convertingκ
to the “usual” diffusion coefficientD = 2T 2/κ , we obtainD ∼ (0.5...0.8)/T , which might lie in
a phenomenologically acceptable range (cf. e.g. refs. [8, 23]). In ref. [4], valuesD ∼ 0.3/T were
cited for the charm case. It is interesting that, despite thevery rough nature of all of these estimates,
a somewhat consistent picture appears to emerge.

7. Conclusions

As the results in fig. 4 show, it is possible to obtain results for the colour-electric correla-
tor which unambiguously demand an enhancement of the non-perturbative interactions over the
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weak-coupling description and which furthermore stronglyconstrain the shape of the correspond-
ing spectral function. Of course, for quantitative statements, careful infinite-volume and continuum
extrapolations need to be taken, statistical uncertainties should be further reduced, and a more care-
ful modelling of the spectral shape is called for.
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