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1. Introduction

Solving QCD via lattice simulations has proven to be a foahid problem, even unsurmount-
able, as of now, as soon as the quark chemical potamtialug /3 is switched on, i.e. if the finite-
density part of the phase space is under study. Hence, gasitbernative approaches have been
developed to gain knowledge; some are basegien0 and extrapolate to finitg, while other
rely on building effective models and approximate desiis that capture, to a certain extent, the
basic dynamics of the system under study.

A dimensionally-reduced effective theory based on stromgpling expansion was introduced
for the pure gauge sector in [1]: it offers robust predicfisver in locating the thermal transition,
can be improved order by order in a systematic fashion ardlestinumerically with relatively
small efforts. Here we report on the inclusion of heavy femsiin the theory, implemented through
a hopping-parameter expansion, and on the introductionmafraero chemical potential, with a
sign problem well under control even at lamge

This contribution offers a sketchy overview on the subjew &ocuses only on some of its
features: for a more detailed discussion, we refer theasted reader to [6].

2. Effectivetheory

The theory under study comes from applying simultaneoustyng-coupling and hopping
parameter expansions to the Wilson action (on a lattice teithporal extenaN; = 1/T, lattice
spacinga, and gauge coupling); it is then suitable to investigate, with the advantages simpli-
fied, dimensionally reduced model, the heavy quark regich@fQCD phase space.

It is possible to integrate out the spatial links by meanssif@ang coupling expansion, which
results in an action whose terms are each given by an e#ectiupling (function of the original
parameters3, Ny, 4 and the hopping parameten and consist of Polyakov loofds = T'W =
Trr]?';luo(i, T). The partition function thus correctly reproduces #ecentre symmetry of the
gauge sector as well as its breaking by the introduction ohigefguark mas$1. In practical
applications, we restrict ourselves to just a few terms ohsan effective action.

A remarkable aspect of this theory is that the definitionopdrtition function is not expressed
with an action linear in the couplings; this is due to the pmkty of performing a partial resum-
mation among certain classes of graphs, which appears t@umgonvergence. Also, this calls
for a careful definition of the suitable observables to ctimrése the phase structure.

Moreover, in the pure gauge case it has been already obstiwagethe resulting phase transi-
tion, albeit remaining first-order, is much weaker than ia lihear (i.e. un-resummed) case, thus
resembling QCD more closely. The critical effective conglig for the quarkless theory can be
translated into a table @.(N;) by means of strong-coupling mappings, obtaining resutisecto
those of full 4D simulations, allowing for a continuum extodation, which yieldsT, = 250(14)
MeV (Fig. 1).

Heavy quarks enter the model through an expansion in theilmpmarametek; this results
in a sum over closed loops which translates to a series eigpairs mixed powers ok andu
(the latter being the first non-trivial coefficient in the cheter expansion of the Yang-Mills action,
u(B) = B/18+...). Partial resummations within classes of similar terms leawriting the quark
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Figure 1: Continuum limit of the pure gauge transition temperaflydrom the effective theory.

contribution in the form of a determinant. If a quark cherhjgatential u is turned on, each loop
will pick up an additional factoe®*N = /T raised to the power of its winding number.

When rewriting the model in terms &f;, a “potential” term appears, encoding the reduced
Haar measure on the group and the Jacobian from expressihd.ess:

dLe' =dodpe? , L(6,0)=€+d?+e0+0 VL) 27 18| +8Rd3—|L[*;
(2.1)
the partition function studied has then the form:

Z(A,h,h) = /|‘| dLye ( i [1+2/\ReLiLﬂ> (|‘|det[(1+ h\/\&)ZNf(1+HV\Q)2NfD . (2.2)
<ij> X
with effective couplingsh (8,N;,K) as given in [1, 6], and, to leading orddr= (2ke? )N and
h= (2ke~3)Nr (expressed to higher orders in [6]). The number of flavdNsrgs from now on set
to one, although thanks to the small valueshdi involved a linear approximation can be safely
used to restorb — Nsh.
One can express the fermion part entirely as a functidn bf:

Qe = def(1+ W) (1+ W) 2 = [(1+ hlg+ 2L + h8) (1+ AL +RL+ )2 . (2.3)

Nonlinearities aside, the above partition function candmegared to a three-state Potts model
with a spin-spin interactionr~ A) and an external magnetic field (1, h) acting on each spin: from
knowledge of the Potts case [7, 8], that has the same symipetigrn, we expect a phase structure
n (h,A) at zero chemical potential (meaniig= h) as depicted in Fig. 2 (left). If the chemical
potential is switched on, we have# h, but the qualitative shape of the phase structure should not
change. In the latter case, however, we use for convenideceaduced’he */T = h.

3. Numerical results

The numerical investigation was performed with a Metrapaligorithm directly implement-
ing the partition function Eq. 2.2: the sign problem appag&s soon ag # 0 is treated in the
usual way by folding the phase into the observable and umpglaccording to the norm of the
configuration weight. It turns out that on systems as larghits: 24° the average sign is well
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Figure 2: Left: Expected phase space for zero chemical potentiahtRRseudocritical line fop = 0. The
line is a fit to Eq. 3.2. Also shown is the critical point.

larger than zero up to values @f/ T of three or more, thus posing no big troubl&ach datapoint
produced represents a statistics of abodtctihfigurations, analysed with the binning technique in
order to estimate uncertainties meaningfully.

Besides the usual observables, suitable for an actionrlingts couplings, we also use their
“nonlinear” counterparts (apart from trivial factors, yheduce to the former fok,h,h — 0):

1 1 11 11

Ein=-— Y 2ReL’ , Qin= — L-(;Ez—— log (1+2AReLiL}) , Q==— S logQy .

lin 3Ng’ <§> ikj Qiin NS‘Z i h 3Ng’ <§> og< + i J> Q hNg’ Z 0gQx
(3.1)

From these observables, the susceptibility and the Binderttf cumulant have been built as
Xo =N3((0?) — (0)?) andBso = %. The main goal of this work is to map the phase
structure in theh, A, L) space: first, the case of zero chemical potential is stuiies, we intro-

duce arealt.

3.1 Zero chemical potential

The investigation proceeds in two steps: first, the pseuitioat line A,c(h) is mapped, sub-
sequently its critical poinfAc, he) is located. The pseudo-critical line is found by fixing siX-va
ues of 00002< h < 0.0012, and for each value by performingAascan at various system vol-
umes, identifying four volume-dependent pseudocritigadistimators (extrema of susceptibility
and Binder cumulant dEj,, Qjin). Then, for each of those estimators, an infinite-volumeagxt
olation Apc(h,Ns) = Apc(h) +c1(h)Ng @ gives a thermodynamic limit which we find to mutually
agree. The whole pseudocritical line is parametrised as

Apc(h) = Ao —agh . (3.2)

A fit to the six points works well (Fig. 2, right) and gives = 1.797(18) and Ao = 0.188051),
the latter roughly reproducing the pure-gauge criticahpéund in [1]. 2 The linearity can be
explained by a first-order expansion, in the small couplimyslved, of the free energy of the
system [7].

LAlso, the configurations yielding a minus sign from the gapae: are extremely rare and can be in fact ignored at
these system volumes and in the region of parameter spanteoést
2The slight deviation between the two results is due to thdlsmiimes used in [1] for the determination.
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Figure 3: Effect of the rotationE,Q) — (E’,Q’) in locating theu = 0 critical line. Top panel: original
observables. Bottom panel: rotated observables. On théhke{normalised, centred) histogram is shown
for the sample casbs = 20, h = 0.000742, on the right the behaviour of the third momenQofQ’) is
plotted for various system volumes. Vertical lines markdhgcal he. Note that the largest volumes show,
for the rotated?’, a third moment essentially zero around the critical point.

In order to locate the critical point, we switch to the noalin observables, Eq. 3.1, and mea-
sure them along\,c(h) at various system sizes up My = 24. Close to the critical point, and
focusing onQ, we expect the following scaling laws for the susceptipifihd Binder cumulant:

Xo =N o), Bag= fa,o(X) ; x=(h—ho)Na’" | (3.3)
with critical indices dictated by the three-dimensionahdsuniversality class, i.g//v ~1.962 v ~
0.6302. Moreover, universality also impliefg, ,(0) ~ 1.604. Writing f(x) as a series ix, the
susceptibility and Binder cumulant data were fitted to thevabexpectation keepinlls > 20,
with rather stable results against different truncatiansffx), different scaling windows, fixing or
leaving free the critical indices, and we get the final valugsh.) = (0.18672(7), 0.00073:(40)) :

Another, more rigorous method is employed in [3] to identlig critical point (see also [4]
for an application to a model similar to ours). The two-disienal distribution of E, Q) is subject
to a rotation— (E’,Q’), with zero covariance; then, the critical line is definedraslocus where,
in the thermodynamic limit, the third moment of the centreargmal distribution ofQ’ vanishes,
g% = 0. We explicitly verified that, around the critical point aftdt large enough volumes, the
rotatedQ’ essentially satisfies this requirement along the line ifledtas described above (Fig. 3).

3.2 Real chemical potential

As already observed, with the sign problem well under cariéroour purposes, we basically
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Figure 4: Left: slopea; of the pseudocritical line as a function gf/ T, with its costiu/T) description.
Right: the very weak dependenceXfon the chemical potential. The point labellett(0), reweighting”
was found with the same technique as for finiteas a cross-check. The slight drift i3 is explained by

a finite-size correction whose amplitude decreaseg gsows: indeed, the more accurate determination
(“scaling”) for zero chemical potential and the largeralues agree very well.

repeat the analysis performed for= 0 at several values @f /T up to 30. The only difference is
that, for each chemical potential, we generate data onlysatge point(A, ﬁ) and then reweight
all results to a whole 2D grid of points (the reweighting &astare complicated by the nonlinear
formulation Eq. 2.2, but if one knows the target couplingsdlvance the table of weights can be
prepared as the configurations are explored by the Mont®)Carl

With the same statistics as for = 0, for each chemical potential the 2d grid of values
Bsq(A,h) was scanned for the line of local minima: the largest-volueslt was taken as the
pseudocritical line and fitted tyc(h; u/T) = Ao(u/T) —ay(u/T)h; again, a linear relation was
sufficient, andAg turned out to be a constant compatible with the one in Eqg. Bitthermore,
it can be argued that, neglecting higher-order correctitresslope of the curve depends ppT
asa(u/T)=Ccoshu/T), a behaviour that was confirmed numerically wzth= 1.814(3), in
agreement with ther = 0 slope (Fig. 4, left).

As for the critical point determination, the = 0 fits encouraged us to defiﬁe(u/T) as the
value whereB4 o = 1.604, with an uncertainty estimated from the difference leetwthis definition
and theh at which theB, g for the volumes 22and 24 cross each other. Remarkably, the critical
Ac(u/T) shows little or no dependence on the chemical potential @&igight), which allows to
rewrite the parametrisation af (1/T) as

he(/T) = ——>

~coshu/T)
A fit of the measured points to the above curve works indeed, \g&ling D = 0.000751) in
full agreement with the: = O result (Fig. 5, left). There is, however, a slight deviatioom the
above law, that we ascribe to higher terms of the expansiqnuifr)2 which, to first order, led
to parametrisingy; (1/T). Remarkably, a similar phenomenon occurs in the simpleg casin
effective theory constructed with the three-state Pottdeha@s can be seen in Fig. 5, right.

(3.4)

4. Conclusions and outlook

With the knowledge of the curvﬁ(u /T) we can use the heavy-quark approximate relation
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Figure5: Left: the critical curveﬁc(u/T) along with the best-fit to Eq. 3.4 for our effective model. IRig
the equivalent figure in the case of the three-state PottehiBH the fit curve, restricted tp/T < 0.5,
shows that the same phenomenon of lamgeverestimation of the criticah occurs in both models as a
(tiny) deviation from the assumption of constait/T). We plotted the data in terms @ffor ease of
comparison.

h= N; exp(—M/T) and obtain the critical surface in the upper-right cornethef Columbia plot;
in particular, for the sake of comparison with existing riteeire [4, 5], we quote here the=0
values ofM./T andk(N; = 4) for Ny = 1,2, 3 respectively:

Mc

T
By carrying on the expansions to higher orders, a more daaeflysis of the feasibility of a con-
tinuum limit can be performed,; this program is indeed ilattd in [6], along with the study of the
imaginaryu side of the phase space. Another interesting directioniektidy is the investigation
of the low-temperature, large density limit of the theorgsioles, of course, the attempt to lower
the fermion mass as much as possible, within the range oicapjilty of the hopping expansion.

= {7.22(5),7.91(5),8.32(5)} , Ko(N; = 4) = {0.082211),0.0691(9),0.06259)} . (4.1)
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