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We investigate the chiral phase transition at finite temperature (T ) in colour SU(Nc = 3) Quan-
tum Chromodynamics (QCD) with six species of fermions (N f = 6) in the fundamental repre-
sentation [1]. The simulations have been performed by using lattice QCD with improved stag-
gered fermions. The critical couplings β c

L for the chiral phase transition are observed for several
temporal extensions Nt , and the two-loop asymptotic scaling of the dimensionless ratio Tc/ΛL

(ΛL = Lattice Lambda-parameter) is found to be achieved for Nt ≥ 6. Further, we collect β c
L at

N f = 0 (quenched), and N f = 4 at a fixed Nt = 6 as well as N f = 8 at Nt = 6,12, the latter relying
on our earlier study. The results are consistent with enhanced fermionic screening at larger N f .
The ratio Tc/ΛL depends very mildly on N f in the N f = 0−4 region, begins increasing at N f = 6,
and significantly grows up at N f = 8, as N f reaches to the edge of the conformal window. We
discuss the interrelation of the results with preconformal dynamics in the light of a functional
renormalization group analysis.
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1. Introduction

Emergence of a conformal symmetry and a preconformal (walking) behavior in strongly fla-
vored non-Abelian gauge theories has received much attention. Walking dynamics near the infra-
red fixed point has been advocated as a basis for strongly interacting mechanisms of electroweak
symmetry breaking. Lattice Monte-Carlo simulations are expected to provide a solid theoretical
base to understand the (pre-)conformal nature in the gauge theory.

A second zero of the two-loop beta-function of massless QCD with N f flavours implies, at least
perturbatively, the appearance of an infrared fixed point (IRFP) at N f & 8.05 [2] with the restoration
of conformal symmetry before the loss of asymptotic freedom (LAF) at NLAF

f = 16.5. Conformality
should emerge when the renormalized coupling at the would be IRFP is not strong enough to break
chiral symmetry. This condition provides the lower bound Nc

f of a so called conformal window
in the flavor space, and we find elaborated analytic predictions [3, 4]: for instance, the functional
renormalization group method [5] suggests Nc

f ∼ 12. Before the emergence of conformal symmetry,
a qualitative change of dynamics is claimed at N f = 6 based on instanton study [6].

Recent lattice studies[7] focused on the computation of the edge of the conformal window N f
c

and the analysis of the conformal window itself, either with fundamental fermions [8 – 15]. or other
representations [16]. Among the many interesting results with fundamental fermions, we single out
the observation that QCD with three colours and eight flavours is still in the hadronic phase [9, 10],
while N f = 12 seems to be close to N f

c, with some groups favouring conformality [8, 9, 11, 12],
and others chiral symmetry breaking [14]. The onset of new strong dynamics at N f = 6 has been
implied via an enhancement of the ratio of chiral condensate to cubed pseudoscalar decay constant
[17].

Using the thermal transition as a tool for investigating preconformal dynamics has been largely
inspired by a renormalization group analysis [5]. The critical temperature for the chiral phase
transition has been obtained as a function of N f . Then the onset of the conformal window has been
estimated by locating the vanishing critical temperature. The phase transition line is almost linear
with N f for small N f , and clearly elucidates the universal critical behaviour at zero and non-zero
temperature in the vicinity of Nc

f . Thus, it would be a promising direction to extend the knowledge
of finite T lattice QCD to the larger N f region, by using the FRG results as analytic guidance.

In this proceedings, we investigate the thermal chiral phase transition for N f = 6 colour
SU(Nc = 3) QCD by using lattice QCD Monte Carlo simulations with improved staggered fermions
based on our recent study [1]. N f = 6 is expected to be in the important regime as suggested by the
results in Refs. [6, 8]. We also compute the critical couplings for N f = 0 (quenched) and N f = 4 at
Nt = 6, and use the results from Ref. [10] for N f = 8. Then we investigate N f dependences of the
chiral phase transition.

2. Simulation setups

Simulations have been performed in the same as in the study used for N f = 8 in Ref. [10]:
We have utilized the publicly available MILC code [18] with the use of an improved version of the
staggered action, the Asqtad action, with a one-loop Symanzik [19, 20] and tadpole [22] improved
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gauge action. The tadpole factor u0 is determined by performing zero temperature simulations on
the 124 lattice, and used as an input for finite temperature simulations.

To generate configurations with mass degenerate dynamical flavours, we have used the rational
hybrid Monte Carlo algorithm (RHMC) [21]. Simulations for N f = 6 have been performed by using
two pseudo-fermions, and subsets of trajectories for the chiral condensates and Polyakov loop have
been compared with those obtained by using three pseudo-fermions with the same Monte Carlo
time step dτ and total time length τ of a single trajectory. We have observed very good agreement
between the two cases for both evolution and thermalization. We have monitored the Metropolis
acceptance and reject ratio, and adjusted τ = 0.2−0.24 and dτ = 0.008−0.016 to realize the best
performance.

Measured observables are the expectation values of the chiral condensate and Polyakov loop,

a3〈ψ̄ψ〉 =
N f

4N3
s Nt

〈
Tr
[
M−1]〉 , L =

1
NcN3

s
∑
x

Re
〈

trc

Nt

∏
t=1

U4,tx

〉
, (2.1)

where Ns (Nt) represents the number of lattice sites in the spatial (temporal) direction, U4,tx is the
temporal link variable, and trc denotes the trace in colour space. The output of this measurement is
the critical coupling β c

L for the chiral phase transition.

3. Results

All results have been obtained for a fermion bare lattice mass am = 0.02. In the left panel of
Figs. 1, the expectation values of the chiral condensate a3〈ψ̄ψ〉 are displayed as a function of βL

for several Nt . It is found that different Nt give a different behaviour of a3〈ψ̄ψ〉. The asymptotic
scaling analysis below will confirm that it corresponds to a thermal chiral phase transition (or
crossover) in the continuum limit.

All values of the critical lattice coupling β c
L are summarized in Table 1. For larger Nt , the

signal for the chiral phase transition becomes less clear, hence we investigate the histogram of the
chiral condensate: The histogram for Nt = 8 exhibits the double-peak structure at βL = 5.2, i.e., the
competition between chirally symmetric and broken vacua. The critical coupling can be estimated
as β c

L = 5.225(25) for Nt = 8. For Nt = 12, we also observe the double-peak structure in the
histogram of the chiral condensate around βL = 5.45.

These results can be analyzed and interpreted in terms of the two-loop asymptotic scaling. Let
us consider the two-loop lattice beta function,

β (g) = −(b0g3 +b1g5) , (3.1)

(b0, b1) =
(
(11−2N f /3)/(4π)2, (102−38N f /3)/(4π)4) , (3.2)

for fundamental fermions in colour SU(3). From Eq. (3.1), we obtain the well known two-loop
asymptotic scaling,

ΛL a(βL) =
(
2Ncb0/βL

)−b1/(2b2
0) exp

[
−βL/(4Ncb0)

]
. (3.3)

Here, ΛL is the so-called lattice Lambda-parameter, and βL = 2Nc/g2, with g =
√

2Nc/10 ·gL. This
definition effectively takes account of the improvement of the staggered lattice action when com-
paring to the asymptotic scaling law, see Ref. [10]. We insert ΛL to the definition of temperature
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T ≡ [a(βL)Nt ]−1,

N−1
t = (Tc/ΛL)×

(
ΛL a(β c

L )
)

, (3.4)

and extract the physical quantity Tc/ΛL by substituting the simulation outputs β c
L for Eq. (3.4).

This ratio must be unique as long as the asymptotic scaling Eq. (3.3) is verified for a given β c
L .

In the right panel of Fig. 1, the slope of the line connecting the origin and the data points corre-
sponds to Tc/ΛL. The Nt = 6, 8, and 12 points have a common slope to a very good approximation,
while the Nt = 4 result falls on a smaller slope. The latter is interpreted as a scaling violation effect
due to the use of a too small Nt . The existence of a common Tc/ΛL for Nt ≥ 6 indicates that the
data are consistent with the two-loop asymptotic scaling Eq. (3.3), confirms the thermal nature of
the transition and that N f = 6 is outside the conformal window, as expected from a previous N f = 8
study [10]. A linear fit provides Tc/ΛL = 1.02(12)×103, which can be interpreted as the value in
the continuum limit for N f = 6 QCD.

In order to have a more complete overview, we have performed simulations for the theory with
N f = 0 (quenched) and N f = 4, only at Nt = 6. These theories are of course very well investigated,
however we have not found in the literature results for the same action as ours. We note that in a
previous lattice study with improved staggered fermions [23], asymptotic scaling was observed for
Nt ≥ 6 for 0 ≤ N f ≤ 4. Table 1 shows a summary of our results for the critical coupling β c

L of the
chiral phase transition at finite temperature for N f = 0, 4, 6, and 8 - the latter from Ref. [10].
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Figure 1: Left: The chiral condensate a3〈ψ̄ψ〉 for N f = 6 and am = 0.02 in lattice units, as a function of
βL, for Nt = 4, 6, 8, and 12. Error-bars are smaller than symbols. Right: The thermal scaling behaviour of
the critical lattice coupling β c

L . Data points for ΛL a(β c
L ) at a given 1/Nt are obtained by using β c

L from
Table 1 as input for extracting ΛL a(β c

L ) in the two-loop expression Eq. (3.3). The dashed line is a linear fit
with zero intercept to the data with Nt > 4.

In the left panel of Fig. 2, we display the critical values of the lattice coupling gc =
√

2Nc/β c
L

from Table 1 in the Miransky-Yamawaki phase diagram. Consider the Nt = 6 results: it is expected
that an increasing number of flavours favors chiral symmetry restoration. Indeed, we find that, on
a fixed lattice, the critical coupling increases with N f in agreement with early studies and naive
reasoning. The precise dependence of the critical coupling on N f at fixed Nt is not known. It is,
however, amusing to note that the results seem to be smoothly connected by an almost straight line:
the brown line in the plot is a linear fit to the data. Comparing the trend for N f = 6 to the one for
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N f = 8 for varying Nt , one can infer a decreasing in magnitude (and small) step scaling function,
hence a walking behaviour. Further study is needed at larger N f , and by using the same action used
for N f = 0−8, to confirm or disprove it.

Table 1: Summary of the critical lattice couplings β c
L for the theories with N f = 0, 4, 6, 8, am = 0.02 and

varying Nt = 4, 6, 8, 12. All results are obtained using the same lattice action.

N f \Nt 4 6 8 12
0 - 7.88±0.05 - -
4 - 5.89±0.03 -
6 4.675±0.025 5.025±0.025 5.225±0.025 5.45±0.05
8 - 4.1125±0.0125 - 4.34±0.04
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Figure 2: Left: Critical values of the lattice coupling gc =
√

2Nc/β c
L for theories with N f = 0, 4, 6, 8

and for several values of Nt in the Miransky-Yamawaki phase diagram. The dashed (brown) line is a linear
fit to the Nt = 6 results. Right: The N f dependence of R(N f )/R(0) for several finite fixed β ref

L . Here,
R(N f ) ≡ (Tc/Λref)(N f ).

Next, we study the N f dependence of the ratio Tc/ΛL and related quantities. In addition to the
scale ΛL, we introduce more UV reference energy scale Λref, which is associated with a reference
coupling β ref

L . Then Eq. (3.3) is generalized as

Λref(β ref
L ) a(βL) =

(
b1

b2
0

βL +2Ncb1/b0

β ref
L +2Ncb1/b0

)b1/(2b2
0)

exp

[
−

βL −β ref
L

4Ncb0

]
. (3.5)

At leading order of perturbation theory b1 → 0, we find Λref/ΛL = exp[β ref
L /(4Ncb0)]. This equa-

tion would be analogous of the ratio ΛL/ΛMS derived in [24] for Wilson fermions up to a further
linear dependence on N f in the numerator of the exponent. In a nutshell, the difference orig-
inates from the fact that we are fixing a bare reference coupling β ref

L , which will be specified
later. Notice that by construction Λref reproduces the lattice Lambda-parameter ΛL in the limit
Λref(β ref

L → 0) = ΛL
(
1+O(1/β c

L )
)
.
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Let us consider first R(N f )|β ref
L =0.0 = Tc/ΛL. The values of Tc/ΛL are found to be 600± 34,

620± 28, 1023± 117, and 2098± 191 for N f = 0, 4, 6, and 8, respectively, and represented as
circles in the right panel of Fig. 2 (the vertical axis is normalized by R(0) = (Tc/ΛL)(N f = 0) for
each β ref

L ). The ratio does not show a significant N f dependence in the region 0 ≤ N f ≤ 4, it starts
increasing at N f = 6, and undergoes a rapid rise around N f = 8. The nearly constant nature of
Tc/ΛL in the region N f ≤ 4 indicates that the role of such energy scale is not significantly changed
by the variation of N f (see [25] for a detailed discussion of this point.) In turn, the increase of
Tc/ΛL in the region N f ≥ 6 might well imply that the chiral dynamics becomes different from the
one for N f ≤ 4. Indeed, a recent lattice study [17] indicates that N f = 6 is close to the threshold for
preconformal dynamics.

We now consider Tc/Λref with finite β ref
L . The N f dependence of the ratio R(N f )≡ (Tc/Λref)(N f )

is shown for several β ref
L in the right panel of Fig. 2, (with normalization by R(0) = (Tc/Λref)(N f =

0) for each β ref
L ). Tc/Λref is now a decreasing function of N f for a larger β ref

L . The Λref associ-
ated with a β ref

L � β∗ = 2Nc/g2
IRFP would be less sensitive to the IR or chiral dynamics. Assuming

Nc
f ' 12, the two-loop beta-function leads to β∗ = −2Ncb1/b0 ' 0.63. The decreasing nature of

(Tc/Λref)(N f ) is found to start around β ref
L = 1.0 & β∗. Thus, the use of a UV reference scale

leads to the decreasing (Tc/Λref)(N f ). This trend is consistent with the FRG study [5], where
the decreasing Tc(N f ) has been obtained by using the τ-lepton mass mτ as a common UV ref-
erence scale with a common coupling αs(mτ). We note that we have constrained our analyses
β ref

L < βUV = β c
L (N f ) ≤ 4.1125±0.0125.

With the use of a UV reference scale, we should observe the predicted critical behavior [5],

Tc(N f ) = K|N f −Nc
f |−1/θ . (3.6)

By choosing the critical exponent θ in the range predicted by FRG: 1.1 < 1/|θ |< 2.5, our data are
consistent with the values Nc

f = 9(1) for β ref
L = 4.0 and Nc

f = 11(2) for β ref
L = 2. We plan to extend

and refine this analysis in the future, and here we only notice a reasonable qualitative behaviour.

4. Summary

We have studied the chiral phase transition at finite T for colour SU(3) QCD with N f = 6
by using lattice QCD Monte-Carlo simulations with improved staggered fermions [1]. We have
determined the critical lattice coupling β c

L for several lattice temporal extensions Nt , and extracted
the dimensionless ratio Tc/ΛL (ΛL =Lattice Lambda-parameter) by using two-loop asymptotic
scaling. The analogous result for N f = 8 has been extracted from Ref. [10]. Tc/ΛL for N f = 0 and
N f = 4 has been measured at fixed Nt = 6, barring asymptotic scaling violations. Then we have
discussed the N f dependence of the ratios Tc/ΛL and Tc/Λref, where Λref is a UV reference energy
scale, related to ΛL via Λref/ΛL ' exp[β ref

L /(4Ncb0)]. We have observed that Tc/ΛL shows an
increase in the region N f = 6−8, while it is approximately constant in the region N f ≤ 4. We have
discussed this qualitative change for N f ≥ 6 and a possible relation with a preconformal phase. The
ratio Tc/Λref is a decreasing function of N f . This behaviour is consistent with the result obtained in
the functional renormalization group analysis [5]. Next steps of the current project involve a scale
setting at zero temperature by measuring a common UV observable.
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