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1. Introduction
In order to reveal the phase structure of QCD, which is relevant to the study of the the early

universe, the core of the neutron star and the heavy ion collisions, it is indispensable to study QCD
by first principle lattice simulations. The lattice simulations, however, have the notorious sign prob-
lem at non-zero quark chemical potential µ . Although there have been proposed several approaches
to study finite density QCD, a satisfactory method reliable at large quark chemical potential is still
lacking. We propose a new approach to finite density QCD by means of the histogram method and
the reweighting technique [1, 2] together with phase quenched simulations, in which the Monte
Carlo ensemble is generated without the complex phase of the quark determinant. The complex
phase is handled with a cumulant expansion to evade the sign problem. In this report, we examine
the applicability of our method; in particular, we discuss the overlap problem and the convergence
of the cumulant expansion.

2. Histogram method

In order to calculate thermodynamic quantities such as the pressure, we need to calculate the
expectation values of the plaquette and the quark determinant. If we are interested in quantities
which depend only on them, the histogram method enables us to evaluate the expectation values
from the probability distribution function of the plaquette and the quark determinant. Here, we
discuss the case of the degenerate Nf flavor case. An extension to the non-degenerate case is
straightforward. We label the gauge configurations by the space-time averaged plaquette P and
the absolute value of the quark determinant, F(µ) = Nf ln |detM(µ)/detM(0)|. Decomposing the
quark determinant as (detM(µ))Nf = eiθ(µ) |detM(µ)|Nf , the partition function normalized at zero
chemical potential can be written as

Z(β ,µ)
Z(β ,0)

=
1

Z(β ,0)

∫
DUeiθ(µ) |detM(µ)|Nf e6βNsiteP =

∫
dPdF

〈
eiθ(µ)

〉
(P,F)

w0(P,F,β ,µ),

(2.1)
where the probability distribution function,

w0(P′,F ′,β ,µ) =
1

Z(β ,0)

∫
DUδ (P′−P[U ])δ (F ′−F [U ]) |detM(µ)|N f e6βNsiteP, (2.2)

is obtained by the histogram of P and F in the phase quenched simulation, and〈
eiθ(µ)

〉
(P′,F ′)

=

∫
DUeiθ(µ)δ (P′−P[U ])δ (F ′−F [U ]) |detM(µ)|N f e6βNsiteP∫

DUδ (P′−P[U ])δ (F ′−F [U ]) |detM(µ)|N f e6βNsiteP

=

〈〈
eiθ(µ)δ (P′−P[U ])δ (F ′−F [U ])

〉〉
(β ,µ)

〈〈δ (P′−P[U ])δ (F ′−F [U ])〉〉(β ,µ)
(2.3)

is the expectation value of the complex phase of the quark determinant with fixed P′ and F ′. The
double bracket indicates the expectation value in the phase quenched simulation. Here, Nsite =

N3
s ×Nt is the number of lattice sites and β = 6/g2. Note that

〈
eiθ
〉

does not depend on β since we
can factor out e6βNsiteP from both the numerator and the denominator in Eq. (2.3). Introducing the
effective potential V0 =− lnw0, the ratio of the partition function, Eq. (2.1), can be written as

Z(β ,µ)
Z(β ,0)

=
∫

dPdFe−{V0(P,F,β ,µ)−ln〈eiθ(µ)〉(P,F)} =
∫

dPdFe−V (P,F,β ,µ), V =V0− ln〈eiθ(µ)〉. (2.4)
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Figure 1: A schematic figure for the
overlap problem.

In order to calculate the partition function precisely,
we have to evaluate the P and F integration in Eq. (2.4)
accurately: namely, we have to generate gauge config-
urations near the minimum of V , which dominates the
integral in Eq. (2.4). The histogram of P and F at a sin-
gle simulation point (β ,µ) provides the effective poten-
tial V0 covering a limited region in the (P,F) plane. If
the complex phase (2.3) has a large P and/or F depen-
dence, the minimum of V differs from that of V0, and we
do not have sufficient number of configurations near the
minimum of V (see Fig. 1). In such a case, there is no
sufficient overlap between the important region for the
integral of Eq. (2.4) and the region where V0 is evaluated precisely by measuring the histogram in
the phase quenched simulation.

This overlap problem can be circumvented by combining the histograms at several simulation
points with the aid of the reweighting method. The effective potential V0 at (β ,µ) can be obtained
by that at (β0,µ0) as follows:

V0(P,F,β ,µ) =V0(P,F,β0,µ0)− lnR(P,F,β ,β0,µ,µ0). (2.5)

Here R(P′,F ′,β ,β0,µ,µ0) = w0(P,F,β ,µ)/w0(P,F,β0,µ0) is the reweighting factor,

R(P′,F ′,β ,β0,µ,µ0) = e6(β−β0)NsiteP′

〈〈
δ (P′−P[U ])δ (F ′−F [U ])

∣∣∣ detM(µ)
detM(µ0)

∣∣∣Nf
〉〉

(β0,µ0)

〈〈δ (P′−P[U ])δ (F ′−F [U ])〉〉(β0,µ0)

. (2.6)

Determination of R is reduced to that of the expectation value of the quark determinant in the
phase quenched simulation when β = β0. Under a β shift with keeping µ = µ0, the slope of the
effective potential changes by a constant factor while the curvature remains the same. Combining
the effective potentials V0 at various simulation points using Eq. (2.5), we can have an enough
overlap with the minimum of V even if the complex phase has a large P and/or F dependence. We
can thus avoid the overlap problem.

Because the phase quenched simulations in two-flavor QCD correspond to the case of isotriplet
chemical potentials, a comment is in order about the influence of the pion condensed phase. The
large isotriplet chemical potential induces the pion condensation [3]. In the pion condensed phase〈
eiθ
〉
(P,F)

is expected to vanish as has been suggested in model calculations [4, 5]. This implies

that V0(P,F) and V (P,F) = V0(P,F)− ln
〈
e−iθ

〉
(P,F)

have no overlap inside the condensed phase
and the partition function Z(β ,µ) is dominated by configurations outside the condensed phase.
Thus, we do not need to generate configurations with

〈
eiθ
〉
(P,F)

= 0, which have no contribution to
the integral in Eq. (2.1).

3. Cumulant expansion for the complex phase of the quark determinant

Even though we can circumvent the overlap problem, a large fluctuation of the phase of the
quark determinant at large chemical potential leads to a frequent change of the sign of the complex
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phase. In this case, Monte Carlo simulations suffer from the sign problem. We exploit the cumulant
expansion for the expectation value of the complex phase to avoid the sign problem,

〈eiθ(µ)〉(P,F) = exp
[

i〈θ〉c−
1
2
〈
θ

2〉
c−

i
3!
〈
θ

3〉
c +

1
4!
〈
θ

4〉
c + · · ·

]
. (3.1)

The cumulants agree with the central moments up to the third order, while they differ at higher
orders. For instance, the fourth order cumulant is given by〈

θ
4〉

c =

〈(
θ −〈θ〉(P,F)

)4
〉

(P,F)

−3
〈(

θ −〈θ〉(P,F)

)2
〉2

(P,F)

. (3.2)

The odd-order cumulants change the sign under the flip of the sign of the chemical potential,
µ ↔−µ , which transforms quarks into antiquarks. Accordingly, only the even-order cumulants
survive if the system is invariant under this transformation, and the complex phase now becomes

〈eiθ(µ)〉(P,F) = exp
[
−1

2
〈
θ

2〉
c +

1
4!
〈
θ

4〉
c + · · ·

]
. (3.3)

We stress that the right-hand side is real and positive once we drop the odd-order cumulants from
the symmetry. By applying the cumulant expansion for the complex phase, the sign problem is
reduced to the convergence problem of the cumulant expansion; namely, we have no sign problem
if the cumulant expansion converges.

An ideal case for the convergence of the cumulant expansion is the case that the phase θ has
a Gaussian distribution. In such a case, only the second-order cumulant survives, 〈eiθ(µ)〉(P,F) =

exp
[
−
〈
θ 2
〉
(P,F)

/2
]
. If we calculate θ(µ) =NfIm[lndetM(µ)] in the limited range [−π,π) taking

into account the periodicity of the complex phase
〈
eiθ
〉
, the phase distribution may have no resem-

blance to the Gaussian distribution. It is essential for the convergence of the cumulant expansion
to calculate the phase of the quark determinant such that the distribution takes of nearly a Gaussian
form. In this study, we define the phase in the range −∞ < θ < ∞. Instead of calculating detM(µ)

directly, we measure the the derivatives of lndetM(µ) with respect to µ , and then calculate the
phase of the quark determinant by integrating the derivatives over µ ,

θ(µ) = NfIm [lndetM(µ)] = Nf

∫
µ/T

0
Im

[
∂ (lndetM(µ))

∂ (µ/T )

]
µ̄

d
(

µ̄

T

)
. (3.4)

Note that this is not a Taylor expansion; namely, it is applicable to any values of the chemical
potential. Conventional phase in the range [−π,π) is recovered by taking the principal value of θ

with the period of 2π . The integrand in Eq. (3.4),

∂ (lndetM(µ))

∂ (µ/T )
= Tr

(
M−1(µ)

∂M(µ)

∂ (µ/T )

)
, (3.5)

can be regarded as the sum of the local density operator defined at each lattice site. If the density
operator has a small correlation length compared to the spatial size of the system, we expect the
Gaussian distribution for the operator due to the central limit theorem [1]. The volume dependence
of the convergence of cumulant expansion has been discussed in [6].

The absolute value of the quark determinant, which is used to label the gauge configurations,
and the ratio of the quark determinant, which is needed to evaluate the reweighting factor Eq. (2.6),

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
2
0
8

Histogram method in finite density QCD Y. Nakagawa

can be also obtained by integrating the real part of the derivatives without further computational
costs,

F(µ) = Nf ln
∣∣∣∣detM(µ)

detM(0)

∣∣∣∣= Nf

∫
µ/T

0
Re

[
∂ (lndetM(µ))

∂ (µ/T )

]
µ̄

d
(

µ̄

T

)
, (3.6)

C(µ) = Nf ln
∣∣∣∣ detM(µ)

detM(µ0)

∣∣∣∣= Nf

∫
µ/T

µ0

Re

[
∂ (lndetM(µ))

∂ (µ/T )

]
µ̄

d
(

µ̄

T

)
. (3.7)

We note that θ(µ), F(µ), and C(µ) can be obtained as continuous functions of µ in this approach.
In addition, the statistical errors for the reweighting factor R are expected to be small for fixed F
since F and C are strongly correlated.

4. Numerical simulations and the results

In this study, we use the RG-improved Iwasaki action for gauge action and the Nf = 2 O(a)-
improved Wilson quark action with cSW = (1− 0.8412β−1)−3/4. The ratio of pseudoscalar and
vector meson masses at T = µ = 0 are set to mPS/mV = 0.8. We generate gauge configurations on
83×4 lattice with the complex phase of the quark determinant removed. The measurement of the
first and the second derivatives of lndetM(µ) with respect to µ , which are used to interpolate the
integrands in Eq. (3.4), (3.6) and (3.7), has been done every 10 trajectories. We employ the random
noise method of [6] with 50 noises. The statistics is the order of O(1000).
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(F
,β

=
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µ/

T
=

2.
0)
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µ0/T=2.0
µ0/T=2.4

Figure 2: The effective potential V0(F) at µ/T = 2.0 evaluated at three different simulation points.

The effective potential without the complex phase, V0(F) = − lnw0(F), at µ/T = 2.0 evalu-
ated at three different simulation points, (β ,µ0/T ) = (1.5,1.6), (1.5,2.0), (1.5,2.4), is drawn in
Fig. 2. V0(F) is normalized such that V0(F) = 0 at the minimum for each simulation. We observe
that the three data sets covering different ranges nicely fall on one curve. Although V0 at the single
simulation point (β ,µ0/T ) = (1.5,2.0) covers only the narrow range centered around F ∼ 50, the
effective potential obtained from the histograms at different simulation points by the use of the
reweighting method widely range in the F direction. Moreover, we see that the statistical errors of
the effective potential, which stem from the reweighting factor, are small as we expected.

The distribution of the phase of the quark determinant is depicted in Fig. 3. The dashed curves
are the fitted results with a Gaussian function. Bθ

4 is the fourth-order Binder cumulant normalized

5
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Figure 3: The distribution of the phase of the quark determinant at µ/T = 0.4 (upper panels) and µ/T = 2.4
(lower panels). The dashed curves are the fitted results with the Gaussian function. Bθ

4 is the fourth-order
Binder cumulant normalized such that Bθ

4 = 3 for the Gaussian function.

such that Bθ
4 = 3 for a Gaussian distribution, i.e., Bθ

4 ≡〈θ 4〉c/〈θ 2〉2c +3. The upper and lower panels
are the results at µ/T = 0.4 and 2.4, respectively. We see that the phase distribution gets broader
as the chemical potential increases. Furthermore, at large chemical potential (lower panels), we
observe that the phase distributes broadly at low temperature. The important point is that the phase
distribution evaluated by Eq. (3.4) can be well approximated by a Gaussian function even in the
high density region µ/T > 1. This promises a good convergence in the cumulant expansion for the
complex phase of the quark determinant.

Fig. 4 shows the second and the fourth order of the cumulants as a function of F (upper panels)
and P (lower panels) at µ/T = µ0/T = 0.4 (left panels) and µ/T = µ0/T = 1.2 (right panels). We
observe that the second order cumulant increases with µ/T both as a function of F and P. On the
other hand, the fourth order cumulant is consistent with zero within the statistical errors although
the errors grow with µ/T . We do not see a clear F and P dependence of the second and fourth
cumulants in these parameter region.

5. Summary

In this study, we proposed a new approach to finite density QCD based on the histogram
method and the reweighting technique with phase quenched simulations. We apply the cumulant
expansion for the complex phase of the quark determinant. We found that the reweighting technique
combined with the histogram method works well and we obtained the effective potential covering a
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Figure 4: The second and the fourth order of the cumulants as a function of F (upper panels) and P (lower
panels) at µ/T = µ0/T = 0.4 (left panels) and µ/T = µ0/T = 1.2 (right panels).

wide range. Moreover, we proposed a way to calculate the phase θ of the quark determinant, which
is not constrained in the range [−π,π). We showed that the distribution of θ becomes wide as µ/T
increases and the phase distribution can be well approximated by a Gaussian function both at small
and large chemical potential. The second order cumulant increases with the chemical potential,
while the fourth order cumulant is consistent with zero although the statistical error increases with
µ . A comprehensive analysis in a wide parameter region is in progress.
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