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Finite density QCD phase transition in the heavy quark region H. Saito

1. Introduction

In our previous study on the QCD phase structure at zero chemical potential in the heavy quark
region [1], we have identified the phase structure through the shape of an effective potential Veff(P)
defined by the probability distribution function of the plaquette P. Since the plaquette is equal to
the gauge action divided by the gauge coupling parameter β , we can precisely evaluate Veff in a
wide range of P by combining data at different β ’s via the reweighting technique.

For the same method to work at non-zero chemical potential and/or small quark masses,
reweightings in the direction of the quark mass and the chemical potential are also mandatory.
Therefore, it is useful to introduce new Veff which depends on variables other than the plaquette. A
study in a light quark mass region by this method is reported in [2].

In this report, we consider the phase structure at non-zero chemical potential in the heavy
quark region. At the leading order of the hopping parameter expansion, the influences of dynamical
quarks are given in terms of the Polyakov loop Ω. Using a new Veff which depends on both P and
ΩR = ReΩ, we study the QCD phase structure at zero and non-zero chemical potential. We adopt
the cumulant expansion method [3, 4], in order to control the sign problem due to the fluctuation
of the complex phase of the quark determinant at finite chemical potential. The method with new
Veff works well to study the fate of the first order transitions. We evaluate the location of the critical
point where the first order deconfining transition in the heavy quark limit turns into a crossover, at
zero and non-zero values of the chemical potential.

2. The method

In this paper, we employ the standard plaquette gauge action and unimproved Wilson quark
action, given by

Sg = −6Nsiteβ P̂, (2.1)

Sq =
Nf

∑
f =1

{
∑
n

ψ̄( f )
n ψ( f )

n −κ f ∑
n

ψ̄( f )
n

{
3

∑
µ=1

[
(1− γµ)Un,µψ( f )

n+µ̂ +(1+ γµ)U†
n−µ̂,µψ( f )

n−µ̂

]
+eµ f a(1− γ4)Un,4ψ( f )

n+4̂
+ e−µ f a(1+ γ4)U†

n−4̂,4
ψ( f )

n−4̂

}}
≡

Nf

∑
f =1

{
∑
n,m

ψ̄( f )
n Mnm(κ f ,µ f )ψ

( f )
m

}
, (2.2)

where P̂ = 1
18Nsite ∑

n,µ<ν
Re Tr

[
Un,µUn+µ̂,νU†

n+ν̂ ,µU†
n,ν

]
is the plaquette, β = 6/g2 is the gauge cou-

pling parameter, κ f (µ f ) is the hopping parameter (chemical potential) for the f -th flavor, and
Nsite = N3

s ×Nt is the lattice volume. In this study, we mainly consider the degenerate case κ f = κ
and µ f = µ for f = 1, · · · ,Nf. Note that Mnm we study does not depend on β .

The probability distribution function for P and ΩR = ReΩ is defined by

w(P,ΩR;β ,κ ,µ) =
∫

DU δ
(
P̂[U ]−P

)
δ

(
Ω̂R[U ]−ΩR

)
[detM(κ,µ)]Nf e6NsiteβP, (2.3)

Ω̂R = ReΩ̂, Ω̂ =
1

3N3
s
∑
n

Tr
[
Un,4Un+4̂,4 · · ·Un+(Nt−1)4̂,4

]
.
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We now define the effective potential as

Veff(P,ΩR;β ,κ,µ) = − lnw(P,ΩR;β ,κ ,µ). (2.4)

Applying the reweighting technique, we find

Veff(P,ΩR;β ,κ,µ) = V0(P,ΩR;β )− ln
[

w(P,ΩR;β ,κ,µ)
w(P,ΩR;β ,0,0)

]
, (2.5)

where V0(P,ΩR;β ) = − lnw(P,ΩR;β ,0,0) = Veff(P,ΩR;β ,0,0) is the effective potential in the
heavy quark limit. The second term in the r.h.s. is the reweighting factor, which is actually in-
dependent of β as

w(P,ΩR;β ,κ,µ)
w(P,ΩR;β ,0,0)

=

∫
DUδ (P̂−P)δ (Ω̂R −ΩR)

[
detM(κ,µ)
detM(0,0)

]Nf

∫
DUδ (P̂−P)δ (Ω̂R −ΩR)

≡

〈[
detM(κ ,µ)
detM(0,0)

]Nf
〉

P,ΩR

.

(2.6)

Since the β -dependence is inherent in V0 only, reweighting in β is simply given by

Veff(P,ΩR;β ,κ,µ) = Veff(P,ΩR;β0,κ,µ)−6Nsite(β −β0)P. (2.7)

At the lowest order of the hopping parameter expansion, the ratio of the quark determinants in
the r.h.s. of (2.6) is evaluated as

detM(κ ,µ)
detM(0,0)

= exp
[
288Nsiteκ4P+3×2Nt+2N3

s κNt
{

cosh
(µ

T

)
ΩR + isinh

(µ
T

)
ΩI

}]
, (2.8)

where ΩI = ImΩ is the imaginary part of the Polyakov loop. The first term proportional to P can be
absorbed into the gauge action by a shift β → β ∗ = β +48Nfκ4. In the evaluation of the effective
potential at non-zero chemical potential, the most difficult part is to evaluate the expectation value
of the complex phase at fixed values of P and ΩR, denoted by〈

eiθ
〉

P,ΩR
with θ = 3×2Nt+2NfN3

s λΩI, λ = κNt sinh(µ/T ) . (2.9)

3. Results at µ = 0

Let us first discuss the case of µ = 0, in which the imaginary phase term in (2.8) is absent.
The reweighting formulae for the derivatives of Veff simply become

∂Veff

∂P
(P,ΩR;β ,κ) =

∂V0

∂P
(P,ΩR;β0)−6Nsite

(
β +48Nfκ4 −β0

)
, (3.1)

∂Veff

∂ΩR
(P,ΩR;κ) =

∂V0

∂ΩR
(P,ΩR)−3×2Nt+2NfN3

s κNt , (3.2)

where the argument β in ∂Veff/∂ΩR and ∂V0/∂ΩR is omitted in (3.2) since they are independent
of β due to (2.7). Note that, besides overall constants [the last terms in (3.1) and (3.2)], the de-
pendences of ∂Veff/∂P and ∂Veff/∂ΩR on P and ΩR are independent of β and κ [the first terms in
(3.1) and (3.2)].
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Figure 1: ∂V0/∂P at β0 = 5.69.
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Figure 2: ∂V0/∂ΩR.

Figure 3: Contour plot of ∂V0/∂P (blue curves) and ∂V0/∂ΩR (red curves) at µ = 0. Values of β ∗ =
β +48Nfκ4 and κ for the corresponding curves of ∂Veff/∂P = 0 and ∂Veff/∂ΩR = 0 are also given.

In Figs. 1 and 2, we plot ∂V0/∂P and ∂V0/∂ΩR as functions of (P,ΩR). Data are taken from
the pure gauge configurations generated on a 243×4 lattice in [1]. To evaluate w(P,ΩR;β ,0,0), we
replace the delta function by the Gaussian function: δ (x) ≈ 1

∆
√

π exp
[
−(x/∆)2

]
where ∆ = 0.0005

for P and 0.01 for ΩR. Using (2.7), we combine data at five β ’s in the range β = 5.68–5.70 to
improve the statistics in a wide range of P and ΩR. We also average Ω over the Z(3) rotation,
and remove statistically poor data points with w < 10−135 ×

∫
wdPdΩR. We then calculate the

derivatives by the difference between x− ε/2 and x+ ε/2, where ε = 0.00025 for P and 0.005 for
ΩR. These parameters are determined by consulting the statistical tolerance of final results.

To study the phase structure, it is useful to follow the curves ∂Veff/∂P = 0 and ∂Veff/∂ΩR = 0.
From (3.1) and (3.2), these curves at different (β ,κ) corresponds to different contour curves of
∂V0/∂P and ∂V0/∂ΩR, as plotted in Fig. 3.

When the curves ∂Veff/∂P = 0 and ∂Veff/∂ΩR = 0 cross at only one point, we have just one
minimum of Veff. In this case, the vacuum changes continuously by a small shift of β and κ ,
indicating no first order transitions around this (β ,κ). On the other hand, when we have three
intersection points (see the contour curves ∂V0/∂P = −1000 and ∂V0/∂ΩR = 50 as well as the
thick stars in Fig. 3), we have two minima and one saddle point, implying the existence of the first

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
2
1
4

Finite density QCD phase transition in the heavy quark region H. Saito

0 2 4 6 8 10
µ/T

0

0.02

0.04

0.06

0.08

κ
cp
I

Figure 4: Critical point in the phase-
quenched approximation for Nf = 2.
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〈
θ 2

〉
c and

〈
θ 4

〉
c at λ = 2.0×10−5 around the

critical point (P,ΩR) ≈ (0.546,0.06) for Nf = 2.

order transition. In particular, from the merger of three intersection points, we can determine the
critical point where the first order transition line terminates.

From Fig. 3, we find that three intersection points appear due to the S-shape of the curve
∂Veff/∂ΩR = 0 at small κ . The S-shape becomes weaker with increasing κ , and eventually the
three intersection points merge to one intersection point at the critical point (e.g. the intersection
of the contour curves ∂V0/∂P = −4000 and ∂V0/∂ΩR = 150 shown by a thin star in Fig. 3 seems
to be beyond the critical point). By consulting the contour curves, we find that ∂V0/∂P ≈ −3150
and ∂V0/∂ΩR ≈ 120 (illustrated by bold curves in Fig. 3) seem to correspond to the critical point.
This gives us a preliminary estimation κcp ≈ 0.0690(7) and β ∗

cp ≈ 5.6805(2), corresponding to
βcp ≈ 5.6783(2) for the case of Nf = 2, where the errors are estimated from the error of the contour
curves due to the statistical errors of potential derivatives.

Our previous study using the effective potential for P gives κcp = 0.0658(3)(+4
−11) and β ∗

cp =
5.6836(1)(5) (βcp = 5.6819(1)(5)) for Nf = 2, where the second errors are systematic ones due to
the method-dependence of the results [1]. Our new estimation deviates slightly from the previous
one. We are currently testing a refinement of the method to extract smoother contour curves. In
the remaining part of this report, however, we instead proceed to the case of µ ̸= 0, by taking an
advantage of the relatively simple reweighting formulae for µ .

4. Results at µ ̸= 0

At µ ̸= 0, we need to evaluate the complex phase factor
〈
eiθ 〉

P,ΩR
defined by (2.9). When θ

fluctuates a lot at large µ , it becomes difficult to estimate
〈
eiθ 〉

P,ΩR
reliablly (the sign problem).

4.1 The case of phase-quenched finite density QCD

We first consider the case of phase-quenched finite density QCD, in which the complex phase
term is removed in the quark determinant ratio (2.8). In two-flavor QCD, this corresponds to the
case of the isospin chemical potential, µu = −µd ≡ µ . After absorbing the first term in the r.h.s. of
(2.8) into the gauge action by β → β ∗, we find that the effect of µ is just to modify the hopping
parameter as κ → κ cosh1/Nt (µ/T ) in the theory at µ = 0. Therefore, to the lowest order of the

5
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I
〉

c /∂P (left) and ∂
〈
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I
〉

c /∂ΩR (right).

hopping parameter expansion, the critical point at finite µ is given by

κ I
cp(µ) = κcp(0)/cosh1/Nt (µ/T ), (4.1)

where κcp(0) is the critical point at vanishing chemical potential. See Fig. 4. Note that, with
increasing µ , the critical point approaches towards κ = 0 where the hopping parameter expansion
is reliable.

4.2 Cumulant expansion

We now turn on the complex phase. In order to incorporate the effects of the complex phase,
we adopt the cumulant expansion method [3, 4]:〈

eiθ
〉

P, ΩR
= exp

[
i〈θ〉c −

1
2

〈
θ 2〉

c − i
1
3!

〈
θ 3〉

c + · · ·
]
, (4.2)

where θ is given by (2.9), and 〈θ〉c ≡ 〈θ〉,
〈
θ 2

〉
c ≡

〈
θ 2

〉
−〈θ〉2,

〈
θ 3

〉
c ≡

〈
θ 3

〉
− 3

〈
θ 2

〉
〈θ〉+

2〈θ〉3, etc., with the averages taken at fixed P and ΩR. Since the symmetry of QCD under θ →−θ
implies 〈θ 2n+1〉c = 0, the r.h.s. of (4.2) is manifestly real and positive. This means that, if the
cumulant expansion converges, the sign problem is solved.

The distribution of the complex phase in the quark determinant has been shown to be well
approximated by a Gaussian distribution up to moderate values of µ when the complex phase θ
is appropriately defined [2, 3, 4]. This means that the leading order term

〈
θ 2

〉
c dominates in the

cumulant expansion, and hence the expansion converges. In the heavy quark region, we study〈
θ 2n

〉
c =

(
3×2Nt+2NfN3

s λ
)2n 〈

Ω2n
I

〉
c with λ = κNt sinh(µ/T ). Our results for

〈
θ 2

〉
c and the next-

leading order
〈
θ 4

〉
c are plotted in Fig. 5 for λ = 2 × 10−5. As will be discussed in the next

subsection, this λ corresponds to the critical point in the large µ limit. Note that the scale for〈
θ 4

〉
c is much magnified in this figure. We find

〈
θ 2

〉
c ≫

〈
θ 4

〉
c, in accordance with the Gaussian

dominance. In the followings, we take the leading order approximation of (4.2) assuming the
Gaussian dominance.

4.3 Critical curve at µ ̸= 0

At the leading order of the cumulant expansion, derivatives of Veff read

∂Veff

∂P
=

∂V0

∂P
−6Nsite

(
β +48Nfκ4 −β0

)
+

(3×2Nt+2NfN3
s λ )2

2
∂
〈
Ω2

I
〉

c
∂P

, (4.3)
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∂Veff

∂ΩR
=

∂V0

∂ΩR
−3×2Nt+2NfN3

s κNt cosh
(µ

T

)
+

(3×2Nt+2NfN3
s λ )2

2
∂
〈
Ω2

I
〉

c
∂ΩR

. (4.4)

When the last term in (4.4) with the factor ∂
〈
Ω2

I
〉

c /∂ΩR modifies the S-shaped contours of ∂V0/∂ΩR

shown in Fig. 2, the critical point shifts from that of the phase-quenched case given by (4.1). Our
results of ∂

〈
Ω2

I
〉

c /∂P and ∂
〈
Ω2

I
〉

c /∂ΩR are shown in Fig. 6.
We note that ∂

〈
Ω2

I
〉

c /∂P is quite flat and small around the critical point, and thus just causes a
shift of βcp according to (4.3). We also find that the effect of ∂

〈
Ω2

I
〉

c /∂ΩR is quite small around the
critical point: When we disregard the last term in (4.4), the critical point locates at κNt cosh(µ/T ) =
κcp(0)Nt ≈ 2×10−5 as discussed in Sect. 4.1, i.e. λ ≈ 2×10−5× tanh(µ/T ) along the critical curve.
Using these values and consulting the right panel of Fig. 6, we find that the contribution of the last
term in (4.4) is at most about 3% of the second term around the critical point even in the large µ
limit where tanh(µ/T ) ≈ 1. Therefore, κcp(µ) is indistinguishable from κ I

cp(µ) shown in Fig. 4,
within the current statistical errors.

5. Conclusion

We have studied the phase structure of QCD at non-zero chemical potential µ in the heavy
quark region, using the effective potential defined by the probability distribution function of the
plaquette P and the real part of the Polyakov loop ΩR. The reweighting technique enables us
to obtain the effective potential at µ ̸= 0 in a wide range of P and ΩR. Adopting the cumulant
expansion method to calculate the effects of the complex phase, we have shown that the derivatives
of the effective potential provide us with an intuitive and powerful way to investigate the fate of
first order phase transitions.

We find that the critical point where the first order deconfining transition in the heavy quark
limit terminates locates quite close to that in the phase-quenched case up to large values of µ .
The smallness of the effects of the complex phase around the critical point is due to the fact that
κcp becomes rapidly small as µ is increased. Therefore, a careful examination of the effects of
the complex phase is required off the critical region and at lighter quark masses. An attempt to
study finite density QCD at light quark masses by combining phase-quenched simulations and the
reweighting technique is reported in [2].
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