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Chiral chemical potential does not cause the sign problem in the Monte Carlo simulation of lattice

QCD. Using the chiral chemical potential, we study the chiral magnetic effect in two-flavor full

QCD. We show that a strong external magnetic field induces an electric current in a chirally

imbalanced QCD matter. The qualitative feature of the induced current is consistent with an

analytical prediction.
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Lattice QCD simulation at finite chiral chemical potential

1. Introduction

Lattice QCD simulation is a powerful tool for nonperturbative analysis of QCD. However,
it breaks down at a finite baryon chemical potential because of the famous sign problem. The
fermion determinant becomes complex and the naive Monte Carlo sampling is invalid. For a small
chemical potential, many methods has been proposed. It is difficult to apply such methods to
a large chemical potential. In some special cases, we can exactly avoid the sign problem. The
famous examples are isospin chemical potential and two-color QCD. These cases are well studied
both in phenomenological studies and in lattice simulations. We here consider another possibility,
that is,chiral chemical potential[1]. Compared with the isospin chemical potential and two-color
QCD, the chiral chemical potential has been less studied so far.

The chiral chemical potentialµ5 is defined in the Dirac operator as

D(µ5) = γµDµ +m+ µ5γ4γ5 (1.1)

[2]. The chiral chemical potential generates a finite chiral charge. The chiral charge is an imbalance
between the left-handed and right-handed fermion numbers. The important property of the chiral
chemical potential is that it does not cause the sign problem.

Using the chiral chemical potential, we analyze the chiral magnetic effect. The chiral mag-
netic effect is an electric current induced by a strong magnetic field in a heavy-ion collision [3]. A
noncentral collision of two heavy ions produces a very strong magnetic field perpendicular to the
reaction plane. The strong magnetic field fixes the spin and momentum directions of the quarks
depending on their chiralities. The positive-helicity particles and the negative-helicity particles
generates electric currents in the opposite direction. If the left-handed and right-handed chiralities
are symmetric, these two contributions exactly cancel out, and the net current is zero. If the chiral-
ities are imbalanced, the net current is finite. In QCD, such an imbalance is locally generated by
the axial anomaly and the topological fluctuation of the background gauge field. The chiral mag-
netic effect is a direct experimental evidence of the topological fluctuation or the event-by-event
CP violation [4, 5].

In this study, we use the chiral chemical potential, instead of the topological fluctuation. This
is a different approach from other lattice simulations for the chiral magnetic effect [6, 7, 8]. The
chiral chemical potential generates the chirally imbalanced QCD matter as an equilibrium state.
Strictly speaking, the chiral charge is not conserved quantity, and this prescription is a kind of ap-
proximation of real QCD. However, the chiral chemical potential is quite convenient for theoretical
studies. The chiral chemical potential was introduced in a phenomenological work, and the induced
current of the chiral magnetic effect was derived as

j =
1

2π2 µ5qB (1.2)

using the Dirac equation coupled with the background magnetic field [2].

2. Simulation setup

We performed the two-flavor Hybrid Monte Carlo simulation with the chiral chemical poten-
tial. We used the Wilson gauge action and the Wilson fermion action. The color number isNc = 3.
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Lattice QCD simulation at finite chiral chemical potential

For sake of simplicity, we considered two fermion flavors with the same massmand chargeq. This
approximation simplifies the numerical simulation, especially the hybrid Monte Carlo algorithm.

The Wilson-Dirac operator with the chiral chemical potential is

[DW(µ5)]x,y = δx,y−κ ∑
i

[
(1− γi)Ui(x)δx+î,y +(1+ γi)U†

i (x− î)δx−î,y

]

−κ
[
(1− γ4eaµ5γ5)U4(x)δx+4̂,y +(1+ γ4e−aµ5γ5)U†

4 (x− 4̂)δx−4̂,y

]
(2.1)

e±aµ5γ5 = cosh(aµ5)± γ5sinh(aµ5) . (2.2)

This is the simplest choice of the chiral chemical potential in lattice QCD. The form of the chiral
chemical potential is analogous to baryon chemical potential [9]. The Dirac operator satisfies the
relation

γ5D(µ5)γ5 = D†(µ5) . (2.3)

From this relation, we can immediately show that the fermion determinantdetD(µ5) is always
positive real and thus the sign problem does not occur in the case of even flavors.

For the analysis of the chiral magnetic effect, we introduced an external magnetic field. On
the lattice, the U(1) gauge field is introduced as the Abelian phase factoruµ(x). For the external
magnetic field, the SU(Nc) link variable is replaced as

Uµ(x)→ uµ(x)Uµ(x) (2.4)

only in the Dirac operator (2.1). The kinetic term of the U(1) gauge field is not introduced in the
Lagrangian. The strength of the magnetic field is an external parameter and is not affected by
dynamical effects. For applying a constant magnetic fieldB in thex3-direction, the phase factor is
set as

u1(x) = exp(−iaqBNsx2) for x1 = aNs

u2(x) = exp(iaqBx1) (2.5)

uµ(x) = 1 for other components

with a2qB= (2π/N2
s )×(integer) [6].

3. Chiral magnetic effect

In this section, the lattice gauge coupling isβ = 2Nc/g2 = 5.32144and the hopping parameter
is κ = 0.1665. These values correspond to the lattice spacinga ' 0.13 fm and the pion mass
mπ ' 0.4 GeV [10].

In Fig. 1, we plot the chiral charge density

n5 ≡−a3〈ψ̄γ4γ5ψ〉= a3〈ψ†
LψL−ψ†

RψR〉 (3.1)

scaled by the lattice unit. At a finite chiral chemical potential, the chiral charge density is finite,
i.e., the system is chirally imbalanced. The chiral charge density increases as the chiral chemical
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Figure 1: The chiral charge densityn5. The lattice sizes areN3
s ×Nt = 123×4,123×8, and124.

potential increases. The qualitative behaviors are different between the confinement phase (Nt = 8
and 12) and the deconfinement phase (Nt = 4). Note, however, that the chiral charge density
saturates inaµ5 > 1.0. This artificial behavior is called as saturation, which is also known in
the cases of isospin chemical potential and two-color QCD [11]. The lattice calculation works only
below the saturation, i.e.,aµ5 ≤ 1.0 in the present setup.

For analyzing the chiral magnetic effect, we applied the external magnetic field to this chirally
imbalanced QCD matter. We calculated the vector current density

jµ ≡ a3〈ψ̄γµψ〉 . (3.2)

We applied the magnetic field in thex3-direction and measured the transverse componentj1 and
the longitudinal componentj3. The two transverse components are the same,j1 = j2, because of
the rotational symmetry. The simulation was done in the deconfinement phase (Nt = 4), where the
chiral magnetic effect is expected in heavy-ion collisions.

In Fig. 2, the transverse componentj1 is plotted as a function of the magnetic fieldB (left)
and of the chiral chemical potentialµ5 (right). The transverse component is always zero because it
is irrelevant for the chiral magnetic effect. As shown in Fig.3, the longitudinal componentj3 is a
linearly increasing function ofB at finiteµ5 and a linearly increasing function ofµ5 at finiteB. We
can parametrize the induced current as

j3 = a3CNdofµ5qB . (3.3)

The factorNdof = Nc×Nf = 6 is the number of quarks with the same charge. This functional form
is consistent with the analytical approach (1.2). The overall constantC is 0.013± 0.001 in the
present lattice simulation. To compare this value with the analytical approach, we need to calculate
the renormalization constant because the local vector current (3.2) is not renormalization-group
invariant. When we carefully estimate the renormalization effect and systematic errors, we can
evaluate QCD corrections to the analytical formula (1.2). A possible correction has been suggested
in a phenomenological work [12].
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Figure 2: The transverse componentj1 of the vector current density. The left and right panels are plotted
as a function ofqBandµ5, respectively. The lattice size isN3

s ×Nt = 123×4.
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Figure 3: The longitudinal componentj3 of the vector current density. The notation is the same as in Fig. 2.
The black dashed line is a linear function (3.3).

In this study, we have succeeded in observing a finite induced current. This is completely
different from other lattice simulations. In the standard lattice QCD without the chiral chemical
potential, the induced current of the chiral magnetic effect cannot be observed [6]. Since lattice
QCD can reproduce nontrivial topological sectors, one might think that it can reproduce the induced
current. However, this is not so easy. In the usual lattice simulation, the number of the topological
charge is typicallyO(1), and the lattice volume is typicallya4V ∼O(105). The topological charge
per volume is thusO(10−5). This is rather small. In our simulation at a finite chiral chemical
potential, the chiral charge density is independent of the volume and its value isO(10−1). Owing
to such a large value, we can directly observe the induced current of the chiral magnetic effect.
This is a great advantage of the chiral chemical potential.

4. Confinement/deconfinement phase transition

We also analyzed the phase structure of a chirally imbalanced QCD matter. The phase structure
in µ5-T plane was studied in phenomenological models [13, 14, 15]. We examined the temperature
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Figure 4: The expectation value of the Polyakov loopP at aµ5 = 1.0. The lattice sizes areN3
s ×Nt =

83×4,123×4, and163×4.

dependence of the Polyakov loop by varying the lattice gauge couplingβ . The Polyakov loop in
full QCD is a phenomenological criterion for confinement/deconfinement. The hopping parameter
is fixed atκ = 0.1665. The magnetic field is not applied here.

In Fig.4, we plot the Polyakov loop ataµ5 = 1.0. The Polyakov loop rapidly rises atβ ' 5.27.
This corresponds to a confinement/deconfinement phase transition. The low-temperature side is the
confinement phase, and the high-temperature side is the deconfinement phase. We determined the
order of the phase transition from the dependence on the spatial volumeV = a3N3

s . As shown in
the figure, the Polyakov loop is almost independent of the spatial volume. We checked that its
susceptibility is also independent of the volume. This scaling behavior suggests that this transition
is a crossover. We also calculated ataµ5 = 0 and 0.5, and found that the situation is the same. Thus,
we conclude that the order of the confinement/deconfinement phase transition does not change in
0≤ aµ5 ≤ 1.0 in the present setup. Since the nature of the phase transition depends on the quark
mass, the calculation at a different quark mass can leads a qualitatively different result, such as a
first-order phase transition or a critical endpoint.
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