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We show the universality of phase diagrams in QCD and QCD-like theories through the large-Nc

equivalence. The whole phase diagrams are identical between QCD at finite isospin chemical po-

tential and SO(2Nc) and Sp(2Nc) gauge theories at finite baryon chemical potential. In the chiral

limit, they are also identical to that of QCD at finite chiral chemical potential. Outside the pion

or diquark condensed phase in these theories, the universality of phase diagrams is applicable to

QCD at finite baryon chemical potential. We further argue that the universality may work approx-

imately even forNc = 3. Our result makes it possible to study QCD at finite baryon chemical

potential and high temperature, especially the chiral phase transition, using sign-free theories on

the lattice.
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1. Introduction

One of the most important questions within the standard model is to unravel the phases of
QCD. In spite of its various phenomenological significance, understanding of the properties of
QCD at finite baryon chemical potentialµB has been hampered mainly because of the sign prob-
lem: the fermion determinant in the QCD action is no longer real and positive atµB 6= 0 so that
the conventional Monte Carlo technique fails. Fortunately, there are class of theories which may
resemble QCD atµB 6= 0 but have no sign problem even at nonzero chemical potential. Such ex-
amples include QCD with isospin chemical potentialµI [1], two-color QCD with even degenerate
flavorsNf atµB 6= 0 [2, 3], QCD with fermions in the adjoint representation atµB 6= 0 [3], SO(2Nc)
gauge theory atµB 6= 0 [4, 5, 6] (see Sec.2), and Sp(2Nc) gauge theory with even degenerate flavors
Nf at µB 6= 0 [6]. Although one can study the properties of these sign-free theories on the lattice, it
is a priori unclear how and if these theories capture the physics of real QCD atµB 6= 0.

Recently it has been shown by the present authors [6] that the whole or the part of phase
diagrams of these theories areuniversalif one takes the limit of large number of colorsNc. The
relations are summarized in Fig.1 (see Sec.3). An equivalence between SO(2Nc) gauge theory
at µB 6= 0 and QCD atµB 6= 0 was first pointed out in [4] and was further investigated in [5].
The universality of phase diagrams can also be extended (for evenNf in the chiral limit) to the
other sign-free theory, QCD at nonzero chiral chemical potentialµ5 (see Sec.4), which is of some
interest in relation to the chiral magnetic effect [7]. From this universality, one can learn QCD
phase diagram atµB 6= 0 by usingsign-freeQCD at µI 6= 0 and SO(2Nc) and Sp(2Nc) gauge
theories atµB 6= 0 in the large-Nc limit, and hopefully, forNc = 3. There are actually evidences that
the universality is valid approximately even in three-color QCD (see Sec.5).

2. Phase diagram of QCD-like theories: an example of SO(2Nc) gauge theory

The Lagrangian of the gauge theories in the Euclidean spacetime is given by

LG =
1

4g2
G

Tr(FG
µν)2 +

Nf

∑
f=1

ψ̄G
f (D +m)ψG

f , (2.1)

whereG denotes the gauge group SU(Nc), SO(2Nc), or Sp(2Nc) and f denotes the flavor index.
FG

µν is the field strength of each gauge fieldAG
µ = AG

µaTG
a . The Dirac fermionψG

f belongs to the
fundamental representation of the gauge groupG and we take the degenerate quark massmf = m
for simplicity. The Dirac operatorD is defined asD = γµDµ + µγ4 with quark chemical potential
µ, andD = γµDµ + 1

2µI γ4τ3 with isospin chemical potentialµI = 2µ for evenNf .
As an example, let us consider the properties of SO(2Nc) gauge theory atµB ≡ 2Ncµ 6= 0.

From(ASO
µ )∗ =−ASO

µ , one has the relation:

Cγ5D(µ)Cγ5 = D(µ)∗, (2.2)

whereC is the charge conjugation matrix. From (2.2) and chiral symmetry{γ5,D} = 0, if iλn

is one of the eigenvalues ofD , eigenvalues appear in quartet(iλn,−iλn, iλ ∗n ,−iλ ∗n ).1 Therefore,
det[D(µ)+m]≥ 0 and the Monte Carlo technique is available atµB 6= 0 [4, 5, 6].

1Note that, whenλn is real or pure imaginary, this quartet reduces to two sets of doublets(iλn,−iλn) with their
eigenvectors being linearly independent from the anti-unitary symmetry (2.2).
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SO(2Nc) or Sp(2Nc) YM with µB

SU(Nc) QCD with µB SU(Nc) QCD with µI
Equivalent outside the BEC-BCS crossover region

Equivalent outside the BEC-BCS crossover region

Equivalent everywhere

Figure 1: Relations between SU(Nc) QCD at µB 6= 0 and µI 6= 0 and SO(2Nc) and Sp(2Nc) Yang-Mills
(YM) theories atµB 6= 0 through the large-Nc orbifold equivalence. QCD atµI 6= 0 can be obtained from
SO(2Nc) or Sp(2Nc) gauge theory atµB 6= 0 by the orbifold projection in the whole phase diagram, while
QCD at µB 6= 0 can be obtained outside the BEC-BCS crossover region. As a result, QCD atµB 6= 0 is
equivalent to QCD atµI 6= 0 outside the BEC-BCS crossover region.

Whenm= µB = 0, the Lagrangian (2.1) has the enhanced chiral symmetry U(2Nf ) at the clas-
sical level [compared withSU(Nf )L×SU(Nf )R×U(1)B×U(1)A in the usual three-color QCD] ow-
ing to the anti-unitary symmetry (2.2). At the quantum level,U(1)A⊂ U(2Nf ) is explicitly broken
by the axial anomaly and SU(2Nf ) symmetry remains. One can indeed rewrite the fermionic part of
the Lagrangian (2.1) manifestly invariant under SU(2Nf ), using the new variableΨ = (ψL,σ2ψ∗

R)T :

Lf = iΨ†σµDµΨ, (2.3)

whereσµ = (−i,σk) with the Pauli matricesσk. The chiral symmetry SU(2Nf ) is spontaneously
broken down to SO(2Nf ) by the formation of the chiral condensate〈ψ̄ψ〉, leading to the2N2

f +
Nf −1 Nambu-Goldstone (NG) bosons living on the coset spaceSU(2Nf )/SO(2Nf ). In contrast
to real QCD, there are not onlyU(1)B neutral NG modes with the quantum numbersΠa = ψ̄γ5Paψ
(just like the usual pions), but alsoU(1)B charged NG modes with the quantum numbersΣS =
ψTCγ5QSψ andΣ†

S = ψ†Cγ5QSψ∗. HerePa are traceless and HermitianNf ×Nf matrices,Pa = P†
a

(a = 1,2, · · · ,N2
f − 1), andQS are symmetricNf ×Nf matrices,QT

S = QS (S= 1,2, · · · ,Nf (Nf +
1)/2), in the flavor space. The chiral perturbation theory describing these NG modes for smallµ
is exactly the same as that ofSU(Nc) gauge theory with adjoint fermionsµB 6= 0 considered in [3],
because their symmetry breaking patterns are the same [5, 6].

Let us consider the zero-temperature (T = 0) ground state of the theory. For smallµ > mπ/2,2

it is energetically favorable for the U(1)B charged NG modesΣS with the excitation energymπ−2µ
to form the Bose-Einstein condensation (BEC). On the other hand, at sufficiently largeµ, the
one-gluon exchange interaction in theψψ-channel is attractive in the color symmetric channel.
According to the Bardeen-Cooper-Schrieffer (BCS) mechanism, this leads to the condensation of
the diquark pairing. Taking into account the Pauli principle, the BCS diquark pairing must be
flavor symmetric, and takes the form〈ψTCγ5QSψ〉 6= 0. Since this BCS pairing has the same

2Note that the chiral perturbation theory breaks down whenµ ∼mρ/2, wheremρ is the mass of the lowest non-NG
mode (i.e.,ρ meson mass).
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T
μBEC BCSU(1)B brokenU(1)B restored T

μBEC BCSU(1)B brokenU(1)B restored

Figure 2: Phase diagram of SO(2Nc) gauge theory atµB 6= 0 for m> 0 (left) andm= 0 (right).

quantum numbers and breaks the same symmetry as the BEC〈ΣS〉 6= 0 at smallµB, it is natural to
assume no phase transition between the BEC and BCS regions, similarly to the BEC-BCS crossover
phenomena in ultracold Fermi gases. The phase diagram of this theory is summarized in Fig.2 [6].

One can check that phase diagrams of QCD atµI 6= 0 [1] and Sp(2Nc) gauge theory atµB 6= 0
[6] are qualitatively similar to that of SO(2Nc) gauge theory atµB 6= 0 in Fig. 2 independently of
Nc ≥ 2 though the quantum numbers of the condensates are different. More remarkably, one can
show that these phase diagrams areuniversalin the large-Nc limit, which we shall argue below in
more detail.

3. Large-Nc orbifold equivalence

The proposed universality can be shown by using the technique of the large-Nc orbifold equiv-
alence. The idea of the orbifold equivalence first originates from the string theory [8], and later it
is generalized within the quantum field theories without any reference to the string theory.

The main idea is as follows. Suppose that we have some gauge theory. We first choose
some discrete symmetry of the theory. Here we call the original theory theparent. Next we
eliminate all the degrees of freedom which are not invariant under the discrete symmetry. We
call this procedure theprojection. As a result of the projection we obtain a new theory, which
we call thedaughter. Then one can show that a class of correlation functions and observables
are equivalent between the parent and daughter theories in the large-Nc limit. This is thelarge-Nc

orbifold equivalence. The field theoretical proof to the all orders in the perturbation theory was
given in [9], and nonperturbative proof in certain gauge theories was given in [10]. There is a
caution to use this orbifold equivalence: this equivalence breaks down if the discrete symmetry for
the projection is broken spontaneously in the parent theory [11].

As an example, let us consider the projection from SO(2Nc) gauge theory with fundamental
fermions atµB 6= 0 (parent theory) to QCD atµB 6= 0 (daughter theory). For an earlier work of the
orbifold projection from SO(2Nc) to SU(Nc) gauge theories, see [12]. We choose the projection
conditions for the gauge fieldASO

µ and the fermionψSO
a as [4, 5, 6],

ASO
µ = JcA

SO
µ J−1

c , ψSO
a = ω(Jc)aa′ψSO

a′ , (3.1)
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whereJc =−iσ2⊗1Nc andω = eiπ/2 generateZ4 subgroups of SO(2Nc) and U(1)B.3 From these
projection conditions, we obtain new gauge field and new fermion field. By a straightforward
calculation, one can show that the resulting theory is the U(Nc) gauge theory (which can be thought
as SU(Nc) gauge theory up to1/N2

c correction at largeNc) with fundamental fermions atµB 6=
0. Then, due to the large-Nc orbifold equivalence, a class of order parameters, e.g., the chiral
condensate, must be equivalent between above two theories. However, theZ4 discrete symmetry
used for the projection of the fermion field, which is a part of U(1)B, is spontaneously broken down
toZ2 inside the BEC-BCS crossover region. Therefore, the orbifold equivalence between these two
theories is valid outside the BEC-BCS crossover region of SO(2Nc) gauge theory atµB 6= 0.

One can also construct the projection from SO(2Nc) gauge theory atµB 6= 0 to QCD atµI 6= 0
for evenNf by choosing another discrete symmetry [6],

ASO
µ = JcA

SO
µ J−1

c , ψSO
a f = (Jc)aa′ψSO

a′ f ′(J
−1
i ) f ′ f , (3.2)

whereJi = −iσ2⊗ 1Nf /2 generatesZ4 subgroup ofSU(2) isospin symmetry and the projection
condition for the gauge field is the same as (3.1). In this case, the isospin symmetry is unbroken
including the BEC-BCS crossover region (when we consider the degenerate quark mass) so that
the orbifold equivalence holds everywhere in the phase diagram.

By repeating the same argument for Sp(2Nc) gauge theory atµB 6= 0, we obtain the “family
tree" of QCD and QCD-like theories as shown in Fig.1 [6]. In particular, through the equivalence
with SO(2Nc) or Sp(2Nc) gauge theory, we obtain the equivalence between QCD atµB 6= 0 and
QCD atµI 6= 0 outside the BEC-BCS crossover region. Since QCD atµI 6= 0 corresponds to the
theory without the complex phase of the fermion determinant of QCD atµB 6= 0, it follows that the
phase-quenched approximation is exact in the large-Nc limit there.

4. QCD at nonzero chiral chemical potential

One can also show the equivalence of phase diagrams between QCD atµ5 6= 0 and QCD at
µI 6= 0 in the chiral limit for evenNf . To see this, we first consider the orbifold projections from
SO(2Nc) gauge theory atµ5 6= 0 to QCD atµ5 6= 0 given by (3.1) and to QCD at nonzero isospin-
chiral chemical potentialµ5

I given by (3.2). Here µ5 = 2µ corresponds to the quark chemical
potential+µ for ψR and−µ for ψL, andµ5

I = 2µ corresponds to+µ for uR anddL and−µ for uL

anddR whenNf = 2. We then note that QCD atµ5
I 6= 0 is equivalent to QCD atµI 6= 0 by relabeling

dL ↔ uL in the chiral limit. From the large-Nc orbifold equivalence, the whole phase diagram of
QCD atµ5 6= 0 must be thus identical to that of QCD atµI 6= 0 in the chiral limit [or SO(2Nc) gauge
theory atµB 6= 0 in the right panel of Fig.2],4 where the pion condensate〈d̄γ5u〉 6= 0 (or diquark
condensate〈ψTCγ5QSψ〉 6= 0) is replaced by the “chiral condensate"〈ψ̄LψR〉 6= 0; the BEC-BCS
crossover region of〈ψ̄LψR〉 6= 0 appears as a function ofµ5. Especially, at sufficiently largeµ5,
the critical temperature of the chiral phase transition is given by the well-known BCS formula

3HereJc is chosen such that it satisfies theregularity conditionTr(Jn
c ) = 0 whenJn

c does not belong to the center of
SO(2Nc), i.e.,Jn

c 6=±12Nc. This condition is necessary for the proof of the perturbative orbifold equivalence [9].
4Note that, in QCD atµI 6= 0 or SO(2Nc) gauge theory atµB 6= 0 in the chiral limit, there isno chiral condensate

but pion or diquark condensate (see, e.g., [13]).
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Tc = (eγ/π)∆, where∆ is the fermion gap at largeµ5 and γ ≈ 0.577 is the Euler-Mascheroni
constant.

It seems that recent model calculations [14, 15, 16] do not capture the physics from intermedi-
ate to largeµ5 due to the cutoff of the model. We also note that, onceµ5 > 0 is turned on,〈ψ̄LψR〉
and〈ψ̄RψL〉 are independent variables unlike QCD atµB 6= 0 where〈ψ̄LψR〉= 〈ψ̄RψL〉. Physically,
asµ5 increases,〈ψ̄LψR〉 should become larger atT = 0 since the phase space for the pairing near
the Fermi surface increases, and so does its critical temperature; the genuine order parameter of
chiral symmetry breaking is〈ψ̄LψR〉 rather than the conventional〈ψ̄ψ〉.

5. Approximate universality in real QCD

Now we discuss what to extent the universality is satisfied in three-color QCD. First we can
explicitly check the universality at sufficiently largeµB andµI by the weak-coupling calculations.
For example, the fermion gap in the BCS region can be computed by solving the gap equation as

∆G ∼ µexp

(
−π2

g
αG

)
, (5.1)

whereG denotes the gauge group SU(Nc), SO(2Nc), or Sp(2N)̧, αG is some factor involvingNc

(see [6] for the expression), and we setgSU = gSO = gSp≡ g. We find the ratios ofαG between
QCD at largeµI and SO(2Nc) and Sp(2N)̧ gauge theories at largeµB [6],

αSO

αSU
=

√
2(N2

c −1)
Nc(2Nc−1)

=

{
1.033 (Nc = 3)

1 (Nc = ∞)
, (5.2)

αSp

αSU
=

√
2(N2

c −1)
Nc(2Nc +1)

=

{
0.873 (Nc = 3)

1 (Nc = ∞)
. (5.3)

Not only these ratios are unity in the large-Nc limit as predicted by the orbifold equivalence, but
also they are close to unity even for three-colors. On the other hand, the BCS gap in QCD at large
µB vanishes, and there is no equivalence with this theory in this region [6]. This is not unexpected,
because the discrete symmetry used for the projection onto QCD atµB 6= 0 is spontaneously broken
inside the BEC-BCS crossover region of SO(2Nc) and Sp(2Nc) gauge theories, and the orbifold
equivalence should break down as explained in Sec.3.

It is also possible to check the universality within effective models and effective theories of
QCD and QCD-like theories. For example, one can show that phase diagrams of chiral random
matrix models between all the universality classes are universal [6]. An equivalence of phase
diagrams between chiral unitary matrix model atµB 6= 0 and that atµI 6= 0 outside the BEC-
BCS crossover region was first pointed out in [17] without using the orbifold equivalence. An
equivalence between QCD and SO(2Nc) gauge theory at smallµB was also confirmed at the level of
chiral perturbation theories [5]. The generalization to all the class of theories in Fig.1 atanyquark
density (atT = 0) should be possible, based on the effective field theories recently constructed in
[13].

From these nontrivial tests, we expect that the universality might work as an approximate
notion in real QCD.
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6. Conclusion

We have discussed the universality of phase diagrams in QCD and QCD-like theories through
the large-Nc orbifold equivalence, which may be valid approximately in three-color QCD. The
proposed universality provides a way to evade the sign problem in lattice QCD simulations atµB 6=
0, e.g., for the physics related to the chiral transition. Most recently it was rigorously shown that
chiral critical phenomena, especially the QCD critical point [18], are ruled out in QCD atµB 6= 0
where the universality holds at largeNc [19]. It would be still important to understand the fate of
the chiral transition atµB 6= 0. The lattice simulations in QCD atµI 6= 0 were already performed,
e.g., in [20, 21]. In our opinion, further investigations in this direction should be required.
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