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1. Introduction

One of the most important questions within the standard model is to unravel the phases of
QCD. In spite of its various phenomenological significance, understanding of the properties of
QCD at finite baryon chemical potentigg has been hampered mainly because of the sign prob-
lem: the fermion determinant in the QCD action is no longer real and positiug gt 0 so that
the conventional Monte Carlo technique fails. Fortunately, there are class of theories which may
resemble QCD atig # 0 but have no sign problem even at nhonzero chemical potential. Such ex-
amples include QCD with isospin chemical potentig[1], two-color QCD with even degenerate
flavorsN; at g # 0[2,13], QCD with fermions in the adjoint representatiorgt# 0 [3], SO(2N;)
gauge theory gtig # 0[4,5, 6] (see Sec2), and SpP2N.) gauge theory with even degenerate flavors
N at ug # 0 [6]. Although one can study the properties of these sign-free theories on the lattice, it
is a priori unclear how and if these theories capture the physics of real Qf»a0.

Recently it has been shown by the present auth@jrshipt the whole or the part of phase
diagrams of these theories armiversalif one takes the limit of large number of cold. The
relations are summarized in Fi@j.(see Sec3). An equivalence between $ZN.) gauge theory
at g # 0 and QCD atug # 0 was first pointed out in4] and was further investigated ][

The universality of phase diagrams can also be extended (forNweémthe chiral limit) to the
other sign-free theory, QCD at nonzero chiral chemical poteptigsee Secd), which is of some
interest in relation to the chiral magnetic effe@}.[ From this universality, one can learn QCD
phase diagram gtig # 0 by usingsign-freeQCD at 1 # 0 and SG2N;) and Sg2N;) gauge
theories apig # 0in the largeN limit, and hopefully, folN; = 3. There are actually evidences that
the universality is valid approximately even in three-color QCD (see&jec.

2. Phase diagram of QCD-like theories: an example of S@N.) gauge theory

The Lagrangian of the gauge theories in the Euclidean spacetime is given by

Lo = 4912Tr (Fo)? +Z PP (2 +myg, (2.1)
whereG denotes the gauge group 8W), SO(2N;), or SH2N;) and f denotes the flavor index.
F is the field strength of each gauge fied = AZ,T.°. The Dirac fermionys$ belongs to the
fundamental representation of the gauge grGugnd we take the degenerate quark mass= m
for simplicity. The Dirac operato® is defined asZ = y*D,, + py* with quark chemical potential
u, andZ = y*D,, + 3 y*12 with isospin chemical potentigly = 2u for evenNs.

As an example, let us consider the properties of 2Mp) gauge theory apig = 2N # 0.
From (A;9)* = —A3°, one has the relation:

Cys2(U)Cys = Z(1)", (2.2)

whereC is the charge conjugation matrix. Froi@.2) and chiral symmetry{ys, 2} = 0, if iA,
is one of the eigenvalues @, eigenvalues appear in quartékn, —iAn,iA;, —iA;).l Therefore,
defZ(u)+ m| > 0 and the Monte Carlo technique is availablggt~ 0 [4, 5, 6].

INote that, when\; is real or pure imaginary, this quartet reduces to two sets of doufdlets—iAn) with their
eigenvectors being linearly independent from the anti-unitary symni2izy, (
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Figure 1: Relations between SB;) QCD atpg # 0 and 1 # 0 and SA2N;) and Sg2N.) Yang-Mills
(YM) theories atug # 0 through the largeN; orbifold equivalence. QCD gt # 0 can be obtained from
SO(2N;) or Sp(2N:) gauge theory atig # 0 by the orbifold projection in the whole phase diagram, while
QCD atug # 0 can be obtained outside the BEC-BCS crossover region. As a result, Q@#-4a0 is
equivalent to QCD afy # 0 outside the BEC-BCS crossover region.

Whenm= pg = 0, the Lagrangiarid.1) has the enhanced chiral symmetr{2N; ) at the clas-
sical level [compared witBU(Ns ). x SU(N¢)rx U(1)g x U(1)a in the usual three-color QCD] ow-
ing to the anti-unitary symmetri2(2). At the quantum levelJ(1)a C U(2N) is explicitly broken
by the axial anomaly and SBN¢) symmetry remains. One can indeed rewrite the fermionic part of
the Lagrangiari2.1) manifestly invariant under S@Ns), using the new variabl’ = (1, a2

S =iwo,D,W, (2.3)

whereoy, = (—i, 0k) with the Pauli matricegi. The chiral symmetry S[(2Ns) is spontaneously
broken down to S@N¢) by the formation of the chiral condensa@y), leading to the2N? +
Nf — 1 Nambu-Goldstone (NG) bosons living on the coset sglde€@N;)/SO(2Ns). In contrast
to real QCD, there are not only(1)g neutral NG modes with the quantum numbEgs= @ ysP,
(just like the usual pions), but aldd(1)g charged NG modes with the quantum numbEBgs=
LpTCngSL/J ands! = LpTCngSL/J*. HereP; are traceless and Hermitidy x Ny matricesP, = P,j
(@a=1,2,---,N? - 1), andQs are symmetridNs x Ny matrices,Ql = Qs (S=1,2,---,N¢(N¢ +
1)/2), in the flavor space. The chiral perturbation theory describing these NG modes fousmall
is exactly the same as that®U(N.) gauge theory with adjoint fermionss # 0 considered in3],
because their symmetry breaking patterns are the s16E [

Let us consider the zero-temperatuFe=£ 0) ground state of the theory. For smalt> my;/2,2
itis energetically favorable for the(d)g charged NG modexss with the excitation energsn,; — 2u
to form the Bose-Einstein condensation (BEC). On the other hand, at sufficientlyLlarde
one-gluon exchange interaction in tijep-channel is attractive in the color symmetric channel.
According to the Bardeen-Cooper-Schrieffer (BCS) mechanism, this leads to the condensation of
the diquark pairing. Taking into account the Pauli principle, the BCS diquark pairing must be
flavor symmetric, and takes the fort@y"CysQsy) # 0. Since this BCS pairing has the same

2Note that the chiral perturbation theory breaks down when m, /2, wheremy, is the mass of the lowest non-NG
mode (i.e. 0 meson mass).
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Figure 2: Phase diagram of S@N.) gauge theory gtig # 0 for m > 0 (left) andm = 0 (right).

quantum numbers and breaks the same symmetry as thg Bfr& 0 at smallyg, it is natural to
assume no phase transition between the BEC and BCS regions, similarly to the BEC-BCS crossover
phenomena in ultracold Fermi gases. The phase diagram of this theory is summarize@ [®JFig.

One can check that phase diagrams of QC gt 0 [1] and Sg2N.) gauge theory gtig # 0
[6] are qualitatively similar to that of S@QN;) gauge theory atig # 0 in Fig. 2 independently of
Nc > 2 though the quantum numbers of the condensates are different. More remarkably, one can
show that these phase diagrams amerersalin the largeN; limit, which we shall argue below in
more detail.

3. Large-N; orbifold equivalence

The proposed universality can be shown by using the technique of theNaaybifold equiv-
alence. The idea of the orbifold equivalence first originates from the string thglpand later it
is generalized within the quantum field theories without any reference to the string theory.

The main idea is as follows. Suppose that we have some gauge theory. We first choose
some discrete symmetry of the theory. Here we call the original theorpdent Next we
eliminate all the degrees of freedom which are not invariant under the discrete symmetry. We
call this procedure therojection As a result of the projection we obtain a new theory, which
we call thedaughter Then one can show that a class of correlation functions and observables
are equivalent between the parent and daughter theories in theNatigeit. This is thelargeN;
orbifold equivalence The field theoretical proof to the all orders in the perturbation theory was
given in 9], and nonperturbative proof in certain gauge theories was givet(n [There is a
caution to use this orbifold equivalence: this equivalence breaks down if the discrete symmetry for
the projection is broken spontaneously in the parent thedily [

As an example, let us consider the projection from(&@) gauge theory with fundamental
fermions atug # O (parent theory) to QCD gig # 0 (daughter theory). For an earlier work of the
orbifold projection from SQ2N;) to SUN;) gauge theories, se&d]. We choose the projection
conditions for the gauge field;° and the fermiony$° as @, /5, 6],

AISJ’O = JcAisJOJE g aS 0= wW(Jc)aa W§O7 (3.1)
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whereJ. = —ig> ® 1y, andw = €7/2 generatéZ, subgroups of S@N;) and U1)g.2 From these
projection conditions, we obtain new gauge field and new fermion field. By a straightforward
calculation, one can show that the resulting theory is tfid:Jgauge theory (which can be thought
as SUN.) gauge theory up td/N? correction at largeN) with fundamental fermions gig #
0. Then, due to the largl: orbifold equivalence, a class of order parameters, e.g., the chiral
condensate, must be equivalent between above two theories. Howevéy, disecrete symmetry
used for the projection of the fermion field, which is a part §1)4, is spontaneously broken down
to Z, inside the BEC-BCS crossover region. Therefore, the orbifold equivalence between these two
theories is valid outside the BEC-BCS crossover region ofZBlg) gauge theory gtig # O.

One can also construct the projection from(8&:) gauge theory gtig # 0to QCD aty; #0
for evenN; by choosing another discrete symmel; [

AP =AY PSP = (J)aa W3t (3 e, (3.2)

whereJ = —i0> ® 1y, /> generatesZ, subgroup ofSU(2) isospin symmetry and the projection
condition for the gauge field is the same 8sl). In this case, the isospin symmetry is unbroken
including the BEC-BCS crossover region (when we consider the degenerate quark mass) so that
the orbifold equivalence holds everywhere in the phase diagram.

By repeating the same argument for(2):) gauge theory atig # O, we obtain the “family
tree" of QCD and QCD-like theories as shown in Fig6]. In particular, through the equivalence
with SO(2N.) or Sp@N;) gauge theory, we obtain the equivalence between QCil; a 0 and
QCD aty; # 0 outside the BEC-BCS crossover region. Since QCIp gt 0 corresponds to the
theory without the complex phase of the fermion determinant of QQIp & 0, it follows that the
phase-quenched approximation is exact in the Idigkmit there.

4. QCD at nonzero chiral chemical potential

One can also show the equivalence of phase diagrams between QG3-d& and QCD at
W # 0in the chiral limit for everN;. To see this, we first consider the orbifold projections from
SQO(2N;) gauge theory afis # 0 to QCD atps # 0 given by B.1) and to QCD at nonzero isospin-
chiral chemical potentiali® given by B.2). Here us = 2u corresponds to the quark chemical
potential+-u for ¢r and—p for g, andpP = 2u corresponds te-u for ug andd, and—p for ug
anddgr whenN; = 2. We then note that QCD @45 #0is equivalentto QCD att; # 0 by relabeling
d. < u_ in the chiral limit. From the larg®. orbifold equivalence, the whole phase diagram of
QCD atus # 0 must be thus identical to that of QCDat+£ 0in the chiral limit [or SG2N.) gauge
theory atug # 0 in the right panel of Fig2],* where the pion condensa{td_yg,u) = 0 (or diquark
condensatéy CysQsy) # 0) is replaced by the “chiral condensat@l ¢r) # 0; the BEC-BCS
crossover region ofy Yr) # 0 appears as a function pk. Especially, at sufficiently larggs,
the critical temperature of the chiral phase transition is given by the well-known BCS formula

8HereJ. is chosen such that it satisfies tlegularity conditionTr(J7) = 0 whenJ? does not belong to the center of
SQO(2Nc), i.e.,Jf # 1y, . This condition is necessary for the proof of the perturbative orbifold equival8hce |

“Note that, in QCD apy # 0 or SQ2N.) gauge theory atig # 0 in the chiral limit, there iso chiral condensate
but pion or diquark condensate (see, e13))
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Te = (e¥/m)A, whereA is the fermion gap at larggs and y ~ 0.577 is the Euler-Mascheroni
constant.

It seems that recent model calculatiofhd,[15,16] do not capture the physics from intermedi-
ate to largeus due to the cutoff of the model. We also note that, opge- O is turned on{Yi Yr)
and((ry, ) are independent variables unlike QCDugt# 0 where((i Yr) = (Yryy ). Physically,
as s increases({y Yr) should become larger at= 0 since the phase space for the pairing near
the Fermi surface increases, and so does its critical temperature; the genuine order parameter of
chiral symmetry breaking i&Ji r) rather than the conventional ).

5. Approximate universality in real QCD

Now we discuss what to extent the universality is satisfied in three-color QCD. First we can
explicitly check the universality at sufficiently largg and Ly by the weak-coupling calculations.
For example, the fermion gap in the BCS region can be computed by solving the gap equation as

Ag ~ ueXp<—7§ae> : (5.1)

whereG denotes the gauge group 8W), SO(2N;), or SE2N), ag is some factor involvind\.
(see ] for the expression), and we sgéy = gso = gsp = 9. We find the ratios ofig between
QCD at largey; and S@2N;) and S§2N) gauge theories at large; [6],

aso | 2(N2—1) | 1033 (N.=3)
asy NC<2NC—1>‘{ 1 (Ne=o)’ (52)
asp [ 2(NZ—1) ] 0873 (Nc=3)
asu | Ne(@Ne+1) { 1 (Ne=o) (53)

Not only these ratios are unity in the larbi-imit as predicted by the orbifold equivalence, but
also they are close to unity even for three-colors. On the other hand, the BCS gap in QCD at large
Us vanishes, and there is no equivalence with this theory in this re@lofilhis is not unexpected,
because the discrete symmetry used for the projection onto Q@40 is spontaneously broken
inside the BEC-BCS crossover region of @8.) and S§2N.) gauge theories, and the orbifold
equivalence should break down as explained in 'Sec.

It is also possible to check the universality within effective models and effective theories of
QCD and QCD-like theories. For example, one can show that phase diagrams of chiral random
matrix models between all the universality classes are unive8galAn equivalence of phase
diagrams between chiral unitary matrix modeligt # 0 and that aty; # 0 outside the BEC-

BCS crossover region was first pointed out &¥][ without using the orbifold equivalence. An
equivalence between QCD and @) gauge theory at smalis was also confirmed at the level of
chiral perturbation theorie$]. The generalization to all the class of theories in Aigtanyquark
density (atT = 0) should be possible, based on the effective field theories recently constructed in
[13].

From these nontrivial tests, we expect that the universality might work as an approximate
notion in real QCD.
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6. Conclusion

We have discussed the universality of phase diagrams in QCD and QCD-like theories through
the largeN. orbifold equivalence, which may be valid approximately in three-color QCD. The
proposed universality provides a way to evade the sign problem in lattice QCD simulatjgng at
0, e.g., for the physics related to the chiral transition. Most recently it was rigorously shown that
chiral critical phenomena, especially the QCD critical pci8]] are ruled out in QCD atig # 0
where the universality holds at lar§& [19]. It would be still important to understand the fate of
the chiral transition atig # 0. The lattice simulations in QCD at; # 0 were already performed,

e.g., in G, 21]. In our opinion, further investigations in this direction should be required.
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