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1. Motivation

Since the early days of quantum field theories, it has been argued that their perturbative weak
coupling expansions are asymptotic [1]. Usually, the asymptotic behaviour is identified using semi-
classical methods such as instantons. Asymptotically free theories with marginal operators consti-
tute a special case. Examples of such theories are four-dimensional non-Abelian gauge theories or
the two-dimensional O(N) model. For these the structure of the operator product expansion (OPE)
is believed to give rise to a specific pattern of asymptotic divergence known as (infrared) renor-
malon [2, 3] that cannot be obtained using standard semiclassical methods. In the two-dimensional
O(N) model renormalon effects were found (though suppressed) in an explicit calculation in the
large N expansion [4]. For four-dimensional non-Abelian gauge theories no such proof exists. On
the contrary, the possibility that the renormalon either does not exist or is very small has been raised
in recent years, see e.g. [5, 6].

At present, the only way to unambiguously settle this issue is by performing weak coupling
expansions to sufficiently high orders in the strong coupling parameter α . In particular, in SU(3)
gauge theory, the problem has been addressed by simulations in lattice regularization, using Nu-
merical Stochastic Perturbation Theory (NSPT) [7 – 9]. These simulations, that mainly focused on
computing the plaquette and small Wilson loops to perturbative orders as high as α20 [10], so far
had no success in uncovering a renormalon.

The situation radically changed recently when, for the first time, accurate agreement between
the explicit computation of perturbative coefficients and the expectation from the renormalon anal-
ysis was reported [11]. Here we discuss some aspects of this analysis where the comparison was
performed using another observable, the static self-energy. This, on theoretical grounds, is far more
suited for a renormalon study. The simulations were conducted on a large set of different lattice
volumes, for orders as high as α20, and finite size effects were carefully investigated.

2. Renormalon Theory

In QCD, the expansion of a generic observable K as a power series in the coupling α ,

K = ∑
n

knαn, (2.1)

is believed not to be convergent but at best to be asymptotic. Technically, renormalons appear as
singularities in the Borel plane, making a Borel summation impossible. The way in which the
series K diverges is closely tied to the OPE, commonly giving rise to terms kn ∼ an

dn!, where ad is
a constant. For small orders n, the successive contributions knαn to the series reduce in size down
to a minimum at n0 ≈ 1/(|ad|α). The series should be truncated at n0 and inevitably one has to
deal with an ambiguity of the order of the minimum term, kn0αn0 ∼ exp[−1/(|ad |α)].

The OPE allows one to isolate the short (given by Wilson coefficients Ci(q,µ), where i is
the dimension) and long distance effects (matrix elements 〈Oi(µ,Λ)〉) of an observable R(q,Λ) by
means of a factorization

R =C0(q,µ)〈O0(µ,Λ)〉+Cd(q,µ)〈Od(µ,Λ)〉
(

Λ
q

)d

+ · · · . (2.2)
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Here, µ is the factorization scale separating the perturbative and low momentum scales q and Λ
from each other: q � µ � Λ.

For the plaquette, 〈O0〉 = 1, followed by the dimension d = 4 gluon condensate as the next
higher dimensional non-vanishing operator. The lower bound for the accuracy of expanding C0 is
of O(Λ4/q4)∼ kn0αn0 , the size of the minimum term, as can be seen from(

Λ
q

)d

' exp
(
− 1
|ad|α

)
, where |ad |=

β0

2πd
, β0 = 11 . (2.3)

The (infrared) renormalon ambiguity of this perturbative series cancels that of the next order non-
perturbative matrix element in eq. (2.2). Hence, the physical quantity R is well-defined. It follows
that series expansions with the smallest d (and therefore n0) are those in which one should be able
to detect renormalons most easily (for d = 1 four times “faster” than in the plaquette case). Among
such candidates are the pole mass or the associated self-energy of a static source,

δm =
1
a ∑

n≥0
cnαn+1(1/a) . (2.4)

a−1, the inverse lattice spacing, serves as a UV-regulator. The large n behaviour of the coefficients
cn reads

cn
n→∞
= Nm

(
β0

2π

)n Γ(n+1+b)
Γ(1+b)

(
1+

b
(n+b)

s1 + · · ·
)
, (2.5)

where the coefficients b and s1 can be found in [12] and Nm is a normalization constant that cancels
when constructing ratios

cn

cn−1

1
n
=

β0

2π

[
1+

b
n
− (1−bs1)

bs1

n2 +O

(
1
n3

)]
. (2.6)

3. Numerical Simulation

The simulations are performed within the framework of NSPT [7 – 9] that allows for a direct
determination of perturbative series coefficients. A key ingredient of NSPT is the Langevin update,
for which we employ the O(∆τ2) integrator described in [13, 14]. Its convergence behaviour
regarding the time step ∆τ is remarkably flat, so that we can circumvent a ∆τ-extrapolation and
work at a fixed value ∆τ = 0.05. We implement periodic boundary conditions in time and twisted
boundary conditions [15 – 18] in the three spatial directions, completely eliminating zero modes.
Twists in two directions would have achieved this, too [19], but with reduced numerical stability.

Employing the Wilson gauge action, we calculate the temporal Polyakov line

L(R)(NS,NT ) =
1

N3
S
∑
n

1
dR

tr

[
NT−1

∏
n4=0

UR
4 (n)

]
. (3.1)

on hypercubic volumes with NS and NT lattice points in spatial and temporal directions, respec-
tively. R denotes the representation of the link UR

µ (n), of dimension dR, and we study both, the
triplet and the octet cases. We repeat the measurements using stout-smeared [20] (smearing param-
eter ρ = 1/6) links in the temporal direction. Altogether, this amounts to four distinct self-energies
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Figure 1: Comparison between the global fit and data for n = 9 (O(α10)).

(allowing for checks of Casimir scaling and universality) whose perturbative coefficients cn are
linked to the Polyakov line via

P(NS,NT ) =− ln〈L(NS,NT )〉
aNT

NS,NT→∞−→ δm . (3.2)

The dependence on NT and NS can be parameterized [11] as

aP = ∑
n≥0

[
cnαn+1(a−1)− fn

NS
αn+1

(
(aNS)

−1
)
+ · · ·

]
= ∑

n≥0

[
cn +∆(1)

n (NS)+∆(2)
n (NS,NT )

]
αn+1(a−1) ,

∆(1)
n =− 1

NS

[
fn + logs f

n(NS)
]
, (3.3)

∆(2)
n =

1
N2

T

{
vn −

1
NS

[vn +δvn + logsv
n(NS)]

}
+

1
N2

S

{
wn −

1
NS

[wn +δwn + logsw
n (NS)]

}
.

For sufficiently large NT , the correction ∆(1)
n dominates over ∆(2)

n , which comprises the leading
O(1/N2

T ,1/N2
S ) lattice artefacts. In contrast to the 1/N2

T correction terms, the 1/N2
S corrections do

not have a significant effect on our fits. Therefore, we neglect the terms containing wn and δwn.
The ∆(1)

n contribution arises from interactions with mirror charges on lattice replica [21], which
result in an effective static potential between charges that are separated by distances aNS, but with-
out self-energies. Consequently, the high order behaviour of the coefficients cn and fn depends on
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Figure 2: The ratios cn/(ncn−1) for the smeared and unsmeared fundamental static self-energies, compared
to the prediction eq. (2.6) at different orders of the 1/n expansion.

the very same renormalon. Precisely for this reason one needs to disentangle δm from the 1/(aNS)

correction carefully, in order to isolate the d = 1 renormalon.
The log-terms in ∆(1,2)

n are due to the running of α according to the β -function. In the lat-
tice scheme the first three β -function coefficients β0, β1 and β2 have been calculated [22]. The
lack of knowledge of higher β j is leviated by the fact that these do not multiply the leading
fn, fn−1, fn−2, fn−3 coefficients: at sufficiently high n, the fn grow factorially and therefore sub-
leading terms become strongly suppressed.

Eq. (3.3) is used for a global fit to all orders and all data from all our lattice volumes (see Ta-
ble I of [11]). To illustrate the adequacy of the ansatz, in fig. 1 we compare the fit to the unsmeared
triplet data, for the case of n = 9. Note that the ansatz requires only four parameters per order,
yet it results in reasonable values χ2/NDF ≈ 1.29 and 1.46 for smeared and unsmeared triplet data,
respectively.

Our main finding is shown in fig. 2, where we confront the infinite volume extrapolated data
for cn/(ncn−1) with the theoretical prediction, eq. (2.6). Since smearing is a local operation that
has little effect on long-range physics, the smeared and unsmeared data should exhibit the same
large n behaviour, that is dictated by the infrared renormalon. This universality is supported by our
data, as fig. 2 illustrates. The octet representation data are also fully compatible with these findings,
as we will detail in [14].
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Figure 3: Contributions to the sum eq. (2.4) for three different values of α = 1/(|ad |n0), chosen such that
n0 = 7, 9 and 12.

In order to visualize the asymptotic behaviour of the perturbative expansion, in fig. 3 we dis-
play the order-by-order contributions to the sum eq. (2.4). For n0 = 7, 9 and 12, three different
values of α = 1/(|ad|n0) are chosen (note that n0 = 7, corresponding to β = 3/(2πα) ≈ 5.85 or
a−1 ≈ 1.6 GeV, is within the range covered by non-perturbative lattice simulations). The contribu-
tions indeed become minimal at orders close to the predicted values n0 ≈ n+1.

With the infinite volume coefficients cn at hand, we can compute the normalization of the
pole mass renormalon, see eq. (2.5). For smeared triplet data we get Nlat

m = 18.6(4), compared to
Nlat

m = 19.0(3) for the unsmeared case. As ΛMS NMS
m = Λlat Nlat

m , this translates to 0.65(2) in the MS
scheme. This agrees remarkably well with the estimate, NMS

m ≈ 0.62 [23, 24], from an expansion
in the MS scheme up to O(α3). Hence, the d = 1 renormalon manifests itself in a lower bound of
∼ 0.65ΛMS for the precision with which one can determine the heavy quark pole mass.

4. Summary

Within the framework of NSPT, we have computed the static self-energy of SU(3) gauge
theory in four spacetime dimensions to O(α20) in the lattice scheme. Simulations on various lattice
volumes and a careful treatment of finite size effects are vital for our main finding, the onset of a
factorial growth of the self-energy coefficients at an order n ≈ 9, in agreement with the theoretical
renormalon prediction.
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