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We study RI/MOM renormalization constants of bilinear duaperators for N= 4 and the
strong coupling constant foriN= 2+ 1+ 1 using Wilson twisted-mass fermions. We use the
“egalitarian” method to removid (4) hypercubic artifacts non-perturbatively, which enablesou
study physical quantities in a wide range of momenta. We épgy OPE in studying the running
behavior ofZ, andas, from which we are able to extract the Landau gauge dimertsiorgluon
condensatéA?) which is of phenomenological interest.
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1. Introduction

The most systematic approach to study Quantum Chromodynamics (QCIpenmbatively
is lattice QCD. By using the lattice formalism, one is often obliged to break some syiesetr
among which is the continuum rotation symmetry. In Euclidean spac@#herotation symmetry
is broken taH (4) or H(3) hypercubic symmetry depending on whether the lattice setup is the same
on spatial and temporal directions. As a consequence, there are lattigetemwhich are only
H (4) invariant but notO(4) invariant. This is particularly an issue for computations of quantities
like renormalization constants since the associated statistical errors arejoite small, and the
uncertainties from lattice artifacts become visible, thus deserve caretrheats. A popular solu-
tion is to use the “democratic cuts” to select data points with relatively gr{dl) lattice artifacts.
Another approach, which we call the “egalitarian methdd” [1], is to includeldttece artifacts
explicitly in the data analysis. This approach allows one to use a wider rdrapgaopoints and
extract information from the lattice simulations more efficiently. In this work, peyathe “egali-
tarian method” to calculations of renormalization constants of bilinear quantatgs in RI/MOM
scheme and the strong coupling constant in MOM-type Taylor scheme, ibigta@sults in a wide
range of momenta with lattice artifacts under control.

On the other hand, in the low and intermediate momenta region, the perturhatiiag for-
mula may not be applicable and in principle one should take into accounterturipative effects.
Itis suggested by Operator Product Expansion (OPE) that therelsewtatious contributions from
condensates. In our case, as we are working in Landau gauge, imetloéd there could be con-
tributions from the dimension two gluon condens&é) to some renormalization constants and
running coupling constants. This quantity itself(A?) in Landau gauge, is of great phenomeno-
logical interests and has been studied extensively in literature [[seed 2dfamences therein). Here
we show two independent methods to determine its value on the lattice. In bethaasresults
show strong evidences for a positive valugaf) in Landau gauge.

2. RI/MOM renormalization constantsfor Nf = 4

In general, renormalization constants are needed to convert bargtigsacomputed on the
lattice to the renormalized ones. They are essential for giving meaningfuhecurate physical
results. Renormalization constants can be calculated either perturbativelyp-perturbatively on
the lattice. The perturbative approach suffers from systematic emmrstfuncations in perturba-
tion series which are hard to estimate, while non-perturbative approsgfiesfrom discretization
errors which could be systematically improved in practice, so generally thgadurbative ones
are preferred. In this work we adopt one particular non-perturbatiethod, the “RI'’'MOM”
scheme[[3]. We focus on bilinear quark operators in the fétm @I ¢ where the Dirac matriX
represents, ys, Vi, Yu s, Yu Yo (u>v)-

The RI/MOM scheme is defined by requiring the amputated green funtig¢p) equal to its
tree level value at certain kinematic point:

—i

Zq ZoTIA (NP Mo =1, Za(W* =) = 5o TS PR (21)
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HereZ, is the quark wave function renormalization constantZnds the renormalization constant
for operator&. The amputated green functidn; (p) is defined by

S(p) =a* ye P(W0P(0), As(p)=S(P)Ga(P)S*(P) (2.2)
G(p) =a°y e P (Y POr Y(0)@(y)), (2.3)
Xy

where the basic ingredients are quark propagedgps and Green function&(p).
On the lattice, four-momenta are discretized, they take values
20 T N N, . (2na+1)m Nt Nt
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p| NLa N 2, 2 | p4 NTa Ny ) 2 ( )

Note that we have used anti-periodic boundary conditions for fermiongitethporal direction.
First we compute quark propagators and vertex functions for a widgerahmomentay =
N My =N N Then we apply the “egalitarian method” treatment to all data points

to remove the hypercubic artifacts. The basic idea of this approach isthabéynomial function

of p which is invariant undeH (3) transformation is a polynomial function of the(3) invari-
ants pﬂg = 2;31:1 pz, n=24,6. Here we are usingl (3) because we use different lengths and
boundary conditions on temporal and spatial directions. Alternative/can use the functions of
H (3) invariants as functions df4 invariantsp,[jl‘]4 = 2?;:1 Py, N=2,4,6,8 plus theH (4) toH(3)
symmetry breaking terri (p3 — p2/3). In practice, we find that thid (4) to H(3) breaking term is
always small and can be safely ignored in the analysis. We thus use tte trad renormalization

constants can be expressed as functiortd (@ invariants
pl4
Zlatt (apa az/\zQCD) = Zhyp_corr(az p2’ apy, az/\zQCD) + R(a2 pzv azAéCD)aZF +ee (25)

whereZ'a js the raw data on the lattice aZYP-°°"" is the hypercubic corrected quantity with
(almost) naH (4) lattice artifacts. Note that there could still @¢4) invariant lattice artifacts in the
quantityZ"P-o" and we will deal with them later.

Gauge configurations are fixed to Landau gauge for calculating quagagators. Under
this gauge, OPE suggests that the dominant non-perturbative contriboifigncomes from the
vacuum expectation value oA?) = (A5 A%). This term should be taken into account when we run
Z, defined at different renormalization scales to some high seaje 10 GeV, where perturbation
theory is applicable for converting from RI/MOM schemeM& scheme. Basically, we combine
the perturbative running with OPE expansion in a single formula

P, H
ZgYPeo (p?) = ZPN(p?, ) (1 q“ﬁ'é?{‘;z 12 ))<A2(u2>>> +Cazped’P?,  (2.6)
whereZPe' is the perturbative running which is available up to four-loop orfler@4},..,, is the
Wilson coefficient for(A2) which is available up t@’(a#) in certain schemeg][5]. The last term in
Eq. (2.6) is the remnant discretization artifact which is invariant uidy symmetry and is left
over from the hypercubic corrections.
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2.1 Lattice setup

Our goal is to calculate the renormalization constants for=N2 + 1+ 1 twisted-mass[]6]
ensembles generated by the European Twisted Mass (ETM) CollaborASome are working in
the mass-independent scheme, in which all the renormalization constadttoriae extrapolated
to the chiral limit, the strange and charm quarks used in these configurat®iso heavy for our
purposes. Instead, ETMC has generated dedicatedqNensembles with four degenerate (twisted-
mass) light quarks. It turns out that for N- 4 ensembles significant amount of work is needed to
tune the action to the maximal twisted poifit [7] for achieving automaiia) improvement. In
practice, another solution was used: simulating with a pair of ensembles wihaapolute values
of mpcac (or 8) but opposite signs, then removing t&a) artifacts by averaging the quantities
obtained from these two ensembles. In this way, one avoids the work of fimgtwith the price
of doubling the number of ensembles, and the strategy is indeed feasibievas sy David [J] in
their preliminary studies.

To summarize, the procedures we need to go through for a complete amdlysmsenormal-
ization constants consist the following:

e O-average to remové'(a) artifacts.
e Valence chiral limit to remove possible Goldstone-pole contributions for soGe R

¢ “Egalitarian” hypercubic corrections to remotg4) discretization artifacts,e., ﬁ(aZ%)
terms.

e Perturbative running plus OPE to run the renormalization constants to soimesimnégygy
scalee.g, 10 GeV. TheD(4) invariant lattice artifacts are removed in this step.

e Sea quark chiral limit to remove remnafdependencd][7].

Since the spacing is limited, here we only show one example of calculatiafys lefaving a
complete analysis of all RCs to later publications. We use one pairof 28 ensembles wit =
1.95 corresponding to lattice spaciags 0.08fm. In Fig. (1(d)) we show the so-called “fishbone”
structure for raw data ofq and hypercubic corrections with the “egalitarian” treatment. It can be
clearly seen from the plot that even with the selection of “democratic” poist$i(i4) artifacts
in the raw data are still significant(5%) and could give misleading results without hypercubic
treatments. In Fig[(Z(p)) we show the running fitZyf p?) to formula in Eq. [2]6) where we have
included the contributions frorfd?) andO(4) invariant lattice artifacts.

After converting to physical units, we obtain the valuei&frt and the gluon condensata?)
at the scale of 10 GeV:

ZP*"(u = 10GeV) = 0.7423+0.0026 (2.7)
02 (A?)em|u—10Gev = 4.44+0.12 Ge\~. (2.8)

where only statistical errors are quoted.

3. Running coupling constant for Ny =2+1+1

The parametef\qcp is a fundamental quantity of QCD and it is studied extensively in litera-
ture. Its value can be determined by studying the renormalized runnindgjrmgpepnstanios from
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Figure 1: The left plot shows hypercubic corrections Zf. Different colors represent data points with
different values ofatio = p¥//(p?)2. The yellow data points are those with relatively snii(l) artifacts
and often selected by the “democratic” method. The rightgiiows the running dfy according to Eq.6).

experiment or from lattice calculations. Among many methods to calcalata the lattice, one
category of approaches is to study the momentum behavior of Green fumdarticularly, it was
shown in Ref. [[B] that one way to study the running coupling constant igittyghe ghost-ghost-
gluon vertex in Landau gauge in the so-called Taylor scheme:

= lim we(uz N?)F2(u%,N?) (3.1)

AT A>w 4T ’ o

whereF (u?,A?) andG(u?,A?) are the ghost and gluon dressing functions respectively. The advan-
tage of this approach is that only two-point functions are involved thusegpects a good signal

to noise ratio. This method has been successfully applied in previpasONE] and N = 2 [B]
studies ofAqcp. Here we apply the same method tpN2+ 1+ 1 ensembles where we include
the dynamical strange and charm quarks as well as two degeneratelagks g

3.1 Lattice setup

We use four N= 2+ 1+ 1 ensembles generated by ETMC, with different choicg$, @fuark
masses and volumes. The relevant parameters are listed in Table. (gerfeoating these ensem-
bles, lwasaki action is used for the gauge part and Wilson twisted-mtss ecused for both the
degenerate light quark doublets and heavy quark doublets. The getiohk is tuned to maximal
twist by finding the value okci; for which the PCAC mass vanishepcac = 0. Consequently the
physical (parity-even) quantities are automati@) improved [1D].

B Keiit aj | ays | aps | (L/a)*xT/a| confs.

1.95] 0.1612400| 0.0035| 0.135| 0.170 | 32X x64 | 50
0.1612400| 0.0035 488% 96 | 40
0.1612360| 0.0055 38x64 | 50

2.1 | 0.1563570| 0.0020| 0.120| 0.1385| 48 =96 | 40

Table 1: Four ensembles used in our analysis. The one Bith1.95 and volume 48x 96 is only used to
check finite-volume effects.
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Figure 2: The left plot shows hypercubic corrections of the ghostsirgsfunction. The right plot shows
the running ofat according to Eq..2).

On each ensemble, we compute ghost and gluon dressing functions fgeadage of mo-
menta and apply the “egalitarian” hypercubic corrections to rentb{#) artifacts. This step,
shown in Fig. [[2(&)) for the ghost dressing function, is essential sire@erturbative logarithm
scale dependence would be missing in the large momentum regiph 1) had we used the data
from “democratic” selections.

After hypercubic corrections, we then calculate the running couplingtaobay in Taylor
scheme using Eq[ (3.1). It can be shown that with careful calibratiofstife spacingg[11], the
data obtained from different ensembles superimpose with each other ¥p&essar in terms of
momenta in units of one particular lattice spaciag.(; o5 is used here).

Again with the argument from OPE, we claim that there could be non-peatiuebcontribu-
tions from a landau gaugé?) to ar. Analogous to Eq[(2.6), we fit the running coupling constant
at different scales to the formulp]11]

27
pert, 2 m92 q2 AZ
i (“)> 1(%) A )reg +c%pap?  (3.2)

af*" (ag) 4N -1)
pert

whereaf"" is available to four-loop level in perturbation theofy [4]. The coefficlé(mz,qg) can
be calculated using the Wilson coefficient which is availablé tar*) [B].

The running fit forat is shown in Fig.[2(D)). The solid line represents the fitted curve to the
running formula Eq.[(3]2). The dotted line represents the valuer 6fi?) from pure perturbative
running if we use the PDG value(Z°) as input and rums to lower scales. One can clearly see the
discrepancy between the pure perturbative running and the runniluglimg OPE contributions.
Furthermore, a careful analysfs]11] show that the difference betiheelattice data and the fitted
curve to Eq. [[3]2) is scaling with/p®, which seems to indicate that the next-to-leading correction
in OPE is dominated by &(1/p®) term. This is certainly a non-trivial result and needs further
investigations.

By fitting to Eq. (3.2), we obtaif\qcp andg?(A?) in the Taylor scheme. Converting kS,
we have the following results fg@@ = 1.95 lattices:

9
ar(u?) = af*(1?) | 1+ FR(uz,q@ (

NGE* =316+13MeV, g*(A’)ry—10Gev=4.5+04GeV’, (3.3)
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For the strong coupling constant, we can use the perturbative formula totothe scale of
Mz with matching at the bottom quark mass threshold. The resuajigMzo) = 0.11989)(10),
where the first error is statistical and the second error is the estimatedaintefrom light quark
mass effects. This result agrees well with the PDG vaie(M 7o) = 0.11847) [[L3] within errors.
More details of our analysis can be found in REf] [11].

4. Conclusions and outlook

In this work we studied the RI/MOM renormalization constants for bilinearkjoperators at
N = 4 and the running coupling constant gtN2+ 1+ 1 using Wilson twisted-mass fermions.
We have demonstrated that the “egalitarian” method is an effective way to efenigpercubic
artifacts and its application is essential for obtaining reliable data in a wide mhmomenta.
Furthermore, we show that OPE plays an important role in the momentum rangjieered in our
analysis. By taking into account the non-perturbati(e./ p?) contributions, we are able to extract
the values of the Landau gauge gluon conden&atefrom two independent approaches. In both
Nf =4 and N =2+ 141 cases, we obtain vaIuesgﬂ‘(A2>R’“:10(;evcIose to 4 or 5Ge¥, which
strongly suggest the existence of a non-zero Landau gauge diméngigidon condensate. The
next step is to finish the analysis of renormalization constants for other liinelgpossibly twist-2
guark operators. It would also be interesting to study the strong coumimgant in N = 4 so that
one can investigate the dependencéAsf on the number of sea quarks.
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