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A summary of the recent determination of the kaon bag parameter BK by the Budapest-Marseille-
Wuppertal collaboration is given. We use a subset of our new 2+1 flavor ensembles with tree-
level Symanzik glue and 2-step HEX-smeared clover fermions, featuring pion masses between
120 MeV and 380 MeV, a total of 4 lattice spacings (at 2 of which the physical mass point is
reached) and large volumes (up to 6 fm). We use the RI/MOM scheme with trace subtraction to
renormalize the data non-perturbatively. We find BRI

K (3.5GeV) = 0.5308(56)(23) at the physical
mass point, in the continuum and in infinite volume, with all systematics accounted for. Finally,
the details of the conversion to RGI and MS conventions are discussed.
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Kaon bag parameter BK at the physical mass point S. Dürr

1. Introduction

In the Standard Model of particle physics the Cabibbo-Kobayashi-Maskawa (CKM) matrix
contains a complex phase which is the only source of CP violation in hadronic matter. In the kaon
system, it manifests itself as “direct” (in KL→ 2π decays) and “indirect” (through K0↔ K̄0 mixing
prior to the decay) CP violation, the latter being quantified by the parameter εK . By combining an
experimental value of εK with a lattice determination of the bag parameter

BK =
〈K̄0|O∆S=2|K0〉

8
3〈K̄0|Aµ |0〉〈0|Aµ |K0〉 (1.1)

a constraint on the unitarity triangle parameters (ρ̄, η̄) is obtained (see e.g. [1] for details). Here
O∆S=2 = [s̄γµ(1−γ5)d][s̄γµ(1−γ5)d] denotes a local 4-fermion operator with ∆S=2, and this leads
to the contraction topologies shown in the left panel of Fig. 1.

2. Action details

A precise determination of BK with Wilson fermions is usually considered tricky, because the
Wilson action breaks chiral symmetry, and in consequence the renormalization pattern of O1 =

VV + AA is not the same as in the continuum, but involves the other dimension six operators
O2 = VV − AA, O3/4 = SS∓ PP, O5 = T T , too. Here V,A,S,P,T denote vector, axial-vector,
scalar, pseudoscalar and tensor ∆S = 1 bilinears, respectively.

Based on the observation of [2, 3] that the combination of link smearing and (even tree-level)
O(a)-improvement drastically reduces the amount of chiral symmetry breaking [both in perturba-
tion theory and non-perturbatively], one may attempt a precise determination of BK , with the hope
that the mixing coefficients ∆1k (see below) turn out to be small.

Our determination of BK is based on the Nf = 2+1 and Nf = 3 ensembles that were gen-
erated for our study of light quark masses [4, 5]. We used a tree-level Symanzik action for the
gluons and a 2-fold HEX [3] smeared clover action with cSW = 1 for the fermions. This, to-
gether with our choice to opt for large space-time volumes, resulted in extremely favorable algo-
rithmic properties [6], excellent scaling of hadron masses and reliable data in the RI/MOM renor-
malization scheme [7]. The parameters β = 3.5, 3.61, 3.7, 3.8 correspond to the lattice spacings
a = 0.093, 0.077, 0.065, 0.054fm, respectively, the range of pion masses is Mπ = 120−380MeV,
and the spatial box sizes extend up to 6fm. The final result for BK appeared in [8].

3. Non-perturbative renormalization

The Nf = 3 ensembles have the same β -values as the Nf = 2+1 ensembles, with several
(degenerate) quark masses to extrapolate to the chiral limit (see [5, 8] for details). They are used to
renormalize the operators Oi (i = 1, ..,5) in the RI/MOM scheme [9]. We denote their bare matrix
elements 〈K̄0|Oi|K0〉 by Qi. The renormalization pattern is then given by [10]

Qren
i = Z̃ikQk = Zi j(δ jk +∆ jk)Qk. (3.1)

which means that we need to calculate ZBK ≡ Z11/Z2
A and the mixing coefficients ∆1k for k = 2, ..,5.
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Figure 1: Left: Schematic view of the contraction topologies that contribute to BK . In our study the
black blobs represent wall sources at t = 0 and T/2. Right: Ratio of the non-perturbative evolution
RRI

BK
(µ,3.5GeV) = ZRI

BK
(µ)/ZRI

BK
(3.5GeV) to the same quantity in 2-loop perturbation theory, after an ex-

trapolation to the chiral limit and the continuum, using the O(αsa) (orange) or O(a2) (blue) ansatz.
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Figure 2: Left: Mixing coefficient ∆sub
14 (µ2) in the chiral limit at β =3.61. Center: Ditto, after fitting the

linear piece away. Right: Ditto, for our finest lattice (β =3.8); here the value is O(10−4).

At the coarsest β we cannot reach the desired renormalization scale µ = 3.5GeV without
violating the constraint µ < π/(2a) which we impose to avoid large discretization artefacts. Hence,
to circumvent the well known window problem of RI/MOM we use the same procedure as in
[4, 5], i.e. we perform a separate continuum limit of the (chirally extrapolated) evolution function
RRI

BK
(µ,3.5GeV) = ZRI

BK
(µ)/ZRI

BK
(3.5GeV). In the entire range 1.7− 3.5GeV (thus covering more

than a factor 2 in scale) we see no difference to the perturbative evolution (see Fig. 1). This may, at
least in part, be due to the subtraction of a contact term (“trace subtraction”), see [11].

Next we calculate the mixing coefficients ∆1k as in [10], with the additional subtraction [12]

∆
sub
1k (a,m1,m2) =

m1∆1k(a,m1)−m2∆1k(a,m2)

m1−m2
(3.2)

where the mi denote the quark masses. This procedure removes O(p−2) contributions coming
from virtual pion exchanges. The dominant corrections are then O((ap)2) discretization errors
and an O(p−4) term attributed to double pion exchanges. The result for ∆sub

14 (p2) at β = 3.61
(a = 0.077fm) is shown in Fig. 2 before (left) and after (middle) subtracting the linear piece in
p2. At β = 3.8 (a = 0.054fm) the resulting value is O(10−4), and for ∆sub

12 the resulting values are
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Figure 3: Mixing coefficient ∆sub
12 (µ2) in the chiral limit at β =3.61 (left) and β =3.8 (right); note the scale.
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Figure 4: Left: Plateau of Bbare
K (τ) on a 483×64 lattice at β =3.7 (symmetrized about T/2). Right: Relative

contributions of Q1 and ∆1kQk (k=2, ..,5) to BK on our lightest ensemble (Mπ'120MeV, β =3.61).

even consistent with zero within errors (Fig. 3). This is in line with our expectation that the 2 HEX
action features small chiral symmetry violations.

4. Matrix elements

To compute the bare matrix elements, we use random U(1) wall sources, placed at t = 0 and
t = T/2 of our Nf = 2+ 1 lattices, and vary the time slice τ of the operator insertion between
1 and T − 1. The matrix elements Qi for i = 1, ..,5 are determined by performing constant fits
of the time-symmetrized plateaus in τ as shown in Fig. 4 (left). We use three different ranges to
estimate systematic effects due to excited states. By combining the results from these fits with the
mixing coefficients ∆1k and the evolution factor RRI

BK
(µ,3.5GeV) that were calculated previously,

we determine BRI
K (3.5GeV) for each ensemble. It turns out that even for our lightest pion mass

(Mπ = 120MeV) the chirality breaking contributions from ∆1kQk (k = 2, ..,5) are much smaller
than the leading contribution from Q1, see Fig. 4 (right).

5. Physical BK in RI conventions

With the renormalized BRI
K (3.5GeV) for each ensemble in hand, we find the physical BK by

means of a combined interpolation in (mud ,ms) and a continuum extrapolation. For this combined
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Figure 5: Continuum extrapolation and interpolation in M2
π (left) and 2M2

K−M2
π (right) of BRI

K (3.5GeV).

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035

B K
R

I (3
.5

 G
eV

)

sa[fm]
 0.51  0.52  0.53  0.54  0.55

BK
RI (3.5 GeV)

 0.51  0.52  0.53  0.54  0.55

Figure 6: Left: Continuum extrapolation of BRI
K (3.5GeV); here with αsa discretization terms. Right: Sta-

tistical (blue histogram from 2000 bootstrap samples) and systematic (red histogram from 5760 analyses)
variation of BRI

K (3.5GeV). The respective 1σ variations are indicated in the background in both cases.

fit we choose the following functional ansatz

BRI
K (3.5GeV,x,y,a) = BRI

K (3.5GeV) · f (x,y)+d(a) (5.1)

where f (x,y) with x = M2
π and y = 2M2

K−M2
π describes the quark mass dependence, and d(a)

denotes a discretization term. The generic form of f (x,y) is

f (x,y) = 1+a10x+a20x2 +a01y+a11xy− aχx
32π2 f 2

0
log
( x

µ2

)
(5.2)

where we let the fit adjust a selection of the coefficients and set the remaining ones to zero, since
otherwise all coefficients tend to be consistent with zero, within errors – see [8] for details. In the
same spirit d(a) is chosen proportional to either αsa or a2, but not to both of them simultaneously.
It turns out that all these fits yield acceptable χ2/d.o.f., and hence represent reasonable ways of
calculating the physical value of BK . An example of such an interpolation in M2

π and 2M2
K−M2

π is
shown in Fig. 5. It is interesting to note that a nearly flat behavior in mud is in stark contrast to a
much steeper behavior in ms. The data show no visible a-dependence – an observation which is in
line with the rather flat continuum extrapolation shown in the left panel of Fig. 6.

We also test the effect of cutting away pion masses above 340MeV, rather than 380MeV. This,
together with different fit ranges for the pion and kaon mass determination, different fit ranges

5
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for the matrix element, and different choices for the determination of the mixing terms and the
renormalization factor ZBK yields a total of 5760 reasonable analysis procedures. There is no reason
for preferring one over the other. Accordingly it makes sense to consider the overall distribution as
our main result, and not a particular individual fit. We take the median as our central value of BK ,
and the central 68% as our best estimate for the inherent systematic uncertainty. By repeating this
entire procedure on 2000 bootstrap samples we also obtain the statistical errors of these quantities.

For the case of our analysis of BK the statistical and systematic distributions are shown in the
right panel of Fig. 6. Based on these distributions we quote as our final result

BRI
K (3.5GeV) = 0.5308(56)stat(23)syst . (5.3)

Evidently, the systematic error in (5.3) is reliable to the extent to which the systematic “looping”
over the analysis options includes the main uncertainties. Here we carefully examined this point to
make sure that the variation adequately explores all sources of systematic error. In such a case our
analysis method, which was also used in [4, 5], is an automated way of transforming the spread
that results from reasonable analysis options into a systematic uncertainty of the final result.

6. Conversion to RGI and MS conventions

Our main result (5.3) is given in a scheme where everything is done fully non-perturbatively.
For phenomenological applications, nevertheless, often RGI or MS conventions are preferred, and
we now give details of how we convert our result into these frameworks, and how we assess the
extra conversion error that is to be attached to the converted result.

The master formula that relates the renormalization group invariant BRGI
K , in the literature often

denoted by B̂K , to BK(µ) in a generic scheme (e.g. RI or MS) reads

BRGI
K =

(g(µ)2

4π

)−γ0/(2β0)
exp
{∫ g(µ)

0
dg
(

γ(g)
β (g)

+
γ0

β0g

)}
BK(µ) (6.1)

=
(g(µ)2

4π

)−γ0/(2β0){
1+

g(µ)2

(4π)2

[
β1γ0−β0γ1

2β 2
0

]
+ ...

}
BK(µ) (6.2)

where the running coupling, as well as the β - and γ-functions, are specific to that scheme. This
means that the conversion from RI to MS proceeds by using (6.1) or (6.2) twice – once with RI
quantities on the right-hand side, and then backwards with MS quantities on the right-hand side.

A specific property of RI and MS is that they share the same β -function up to 4-loop order,
while the γ-function of BK is only known at 2-loop order, with a shared 1-loop part [13]. Since
(6.1) and (6.2) differ by 3-loop contributions to the γ-function, they are at the practical level equiv-
alent. On this basis, we decide to give the conversion factors and their uncertainties as follows.
With the 4-loop β -function and the 2-loop γ-function the conversion to the RGI or (MS, 2GeV)
frameworks entails a conversion factor of 1.457 and 1.062, respectively. Using instead the 4-loop
β -function and the 1-loop γ-function yields the factors 1.427 and 1.047, respectively, and hence
ultra-conservative conversion errors of order 2% and 1%. In our opinion a better estimate results
from using again the 2-loop γ-function, but trading (6.2) for (6.2); this suggests conversion errors
in the per-mil range. Based on this we decide to assign all converted results a generous extra 1%
error to reflect the perturbative uncertainty inherent in the conversion.
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Figure 7: Our result (7.1) in comparison with a few other recent determinations from Nf = 2 [ETMC] or
Nf = 2+1 [RBC-UKQCD, Aubin et al., SWME] QCD simulations (see [1, 8] for further details).

7. Summary

The calculation described in [8] and in this proceedings contribution yields the main result
(5.3) which is fully non-perturbative and in the RI scheme at the renormalization scale µ = 3.5GeV.
Using perturbation theory, this result is converted into RGI and NDR/MS conventions, in the latter
case at the scale µ = 2GeV. Our converted result then reads

B̂K = 0.7727(81)stat(34)syst(77)pert , BMS
K (2GeV) = 0.5644(59)stat(25)syst(56)pert (7.1)

with an extra 1% conversion error to reflect the uncertainty in this last step.
A comparison with other recent determinations of B̂K is shown in Fig. 7. It seems worth

pointing out that our result has a combined error of 1.5%, while ETMC has 4.1% [14], RBC-
UKQCD has 3.6% [15], Aubin et al. 4.0% [16], and SWME have a combined error of 6.3% [17].

Acknowledgments: Calculations were performed using HPC resources from FZ Jülich and
from GENCI/IDRIS (grant 52275) and clusters at Wuppertal University and CPT.
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