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NP running and renormalization of kaon 4-quark operators N. Garron and A. T. Lytle

1. Introduction

The RBC-UKQCD collaborations have recently achieved the computation of the ∆I = 3/2
part of K→ ππ decays [1, 2]. At leading order of the operator product expansion, there are three
operators that enter the computation : a tree level operator Q3/2

1 and two electroweak penguins Q3/2
7

and Q3/2
8

Q3/2
1 = (s̄iγ

L
µ di)

[
(ū jγ

L
µ u j)− (d̄ jγ

L
µ d j))

]
+(s̄iγ

L
µ ui)(ū jγ

L
µ d j)) , (1.1)

Q3/2
7 = (s̄iγ

L
µ di)

[
(ū jγ

R
µ u j)− (s̄ jγ

R
µ s j))

]
+(s̄iγ

L
µ ui)(ū jγ

R
µ d j)) , (1.2)

Q3/2
8 = (s̄iγ

L
µ d j)

[
(ū jγ

R
µ ui)− (s̄ jγ

R
µ si))

]
+(s̄iγ

L
µ u j)(ū jγ

R
µ di)) , (1.3)

where γ
R,L
µ = γµ(1± γ5) and i, j are colour indices. In order to simulate a 2-hadron final state with

(nearly) physical kinematics and quark masses, the computation of the matrix elements 〈ππ|Q3/2
i |K〉

was done on a large volume (of space extent L0 ∼ 4.6 fm), with a rather coarse lattice spacing
a0 ∼ 0.14 fm (we refer to this lattice as IDSDR: Iwasaki with Dislocation Suppressing Determi-
nant Ratio, see [3] for more details). The extraction of the bare matrix elements has been reported
first last year [4] and updated this year [5]. In this work we explain our method to renormalize
non-perturbatively the bare matrix elements computed on this lattice. Since the lattice spacing is
rather coarse, the usual Rome-Southampton condition [6] does not hold: in the region where the
discretisation effects are under control Λ2

QCD ∼ µ2
0 � (π/a0)2. This problem is circumvented by

the use of a step-scaling matrix [7, 8]. Our strategy involves three different steps:

1. We evaluate the Z-factors at low energy µ0 on the IDSDR lattice using four different RI-
SMOM schemes and compute the relevant renormalized matrix elements. The scale µ0 is
such that the associated discretisation errors are small but, compared to the Rome-Southampton
window, we do not require the non-perturbative effects to be small. Instead one just has to
ensure that the finite volume effects are negligible , so the renormalization window becomes

L−2
0 � µ

2
0 � (π/a0)2 .

2. We compute the scale evolution between µ0 and µ = 3 GeV of these operators on finer
lattices1 (in practice we use a ∼ 0.086 fm,0.114 fm), on which the high scale lies in the
usual Rome-Southampton window

Λ
2
QCD� µ

2� (π/a)2 .

We extrapolate the result to the continuum and obtain the universal running in this energy
range for the different renormalization schemes.

3. At the scale µ = 3 GeV we convert the results to MS using one-loop perturbation theory [9].

Our strategy - depicted in Fig. 1 - can be summarised by the following equation:

〈OMS(µ)〉= CMS←S (µ)× σ
S (µ,µ0)︸ ︷︷ ︸

Fine lattices

×ZS (µ0)〈Obare(µ0)〉︸ ︷︷ ︸
Coarse lattice

, (1.4)

1We refer to these as the IW(asaki) lattices.
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Z(µ0, a0)

IW 323 (a ∼ 0.086 fm)

IW 243 (a ∼ 0.114 fm)

IDSDR 323 (a0 ∼ 0.14 fm)

a→ 0

a(IW)

a(IDSDR)

σ(µ, µ0)
ΛQCD

µ

µ0

µ0

L−1 a−1

Σ(µ, µ0, a) = Z(µ, a)Z−1(µ0, a)

L−1
0 a−1

0

µ

a = 0

Z(µ, a0) = σ(µ, µ0) Z(µ0, a0)

Figure 1: Strategy of the renormalization procedure. The horizontal axis represents the energy scale and
the two other axes represent the lattice spacings of the IW and IDSDR ensembles. As explained in the text,
we compute the renormalization matrix Z(µ0,a0) at low energy µ0 on the coarse IDSDR lattice. There, the
usual Rome-Southampton condition ΛQCD � µ0 � a−1

0 does not hold. Thus we combine this result with
the continuum non-perturbative scale evolution σ(µ,µ0) extracted from two finer IW lattices and obtain the
renormalization factors at a perturbative scale µ , where we match to MS. On each set of lattices the straight
line represents (symbolically) the accessible energy range L−1 � µ � a−1, where both finite volume and
discretisation effects are under control.

where CMS←S (µ) represents the matrix of matching factors which converts the Z-matrix computed
in the scheme S to the scheme MS, and σS (µ,µ0) is the non-perturbative running matrix in the
scheme S (see Section 5 for a precise definition). Since at the moment we have only one lattice
spacing on the IDSDR lattice, the previous equation will be affected by lattice artefacts (which are
estimated), but in principle we could take the continuum limit of ZS (µ0)〈Obare(µ0)〉 and interpret
Eq. (1.4) as a continuum equation. The final result of Eq. (1.4) does not depend on the choice of
intermediate schemes S (up to truncation errors in perturbation theory). We use four different
non-exceptional schemes (but as motivated in [10] we focus only on two schemes) and use the
difference to estimate the size of these errors.

The remainder of the text is organised as follows: in the next section we briefly review the
RI-MOM renormalization procedure used in our calculations, focusing on recent innovations ex-
tending the original proposal of [6]. Section 3 defines precisely our renormalization prescriptions.
Section 4 presents our results for the renormalization factors at low energy on the IDSDR lattice
in two different schemes. In Section 5 we define the step-scaling function matrix which gives
the scale evolution of the operators under considerations and give our numerical results for these
two schemes. Final results in the MS scheme are presented in Section 6, and our conclusions in
Section 7.
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2. Background on RI-MOM

We impose renormalization conditions directly on the lattice using RI-MOM type schemes,
as first proposed in [6]. Because the correlation functions are computed using quarks with fixed
external momenta, it is advantageous to compute quark propagators using momentum sources [11],
η ∼ eipx. This allows the free spatial index of the propagator to be summed at the vertex, greatly
improving the signal and resulting in very small statistical errors, even when using relatively few
configurations.

We use a modified kinematic setup to that originally proposed in [6], called “non-exceptional"
kinematics, in contrast to the original “exceptional" configuration. Instead of using a single ex-
ternal momentum p with zero momentum inserted at the vertex, one uses quark propagators with
external momenta p1 and p2 satisfying p2

1 = p2
2 = (p1− p2)2, with (p1− p2) inserted at the vertex.

This maintains a single renormalization scale, but suppresses channels in which no momentum is
flowing, resulting in a stronger suppression of chiral symmetry breaking effects. Details may be
found in [12].

Finally, we make use of twisted boundary conditions [7], in which the quark fields pick up an
arbitrary phase at the boundary of the lattice. In this way, we can compute quark propagators at
arbitrary momentum instead of only at discrete Fourier modes, i.e. if q represents the quark field
then

q(x+L) = eiθ q(x), p =
2π

L
n+

θ

L
. (2.1)

There are several reasons for using twisted boundary conditions. The principal motivation is that
the direction of p can be chosen to remain constant as its magnitude and the lattice spacing are
changed. This implies the existence of the continuum limit of the non-perturbative running for all
the different momenta. For a given discretization, all lattice artifacts have a fixed parametric de-
pendence on the renormalization scale. Not only will the resultant data be very smooth in (ap)2,
it means that data from different lattice spacings lie along a continuum trajectory. They are also
practical advantages: we can simulate the same physical scale µ0 on both the IDSDR and the IW
ensembles (as long as we know the lattice spacings with sufficient precision). Also we do not need
to subtract perturbatively the O(4)-lattice artefacts, or to give any more-or-less arbitrary prescrip-
tion to choose our momenta. Thus the use of twisted boundary conditions forms an essential part
of our calculation.

3. Renormalization in RI-SMOM schemes

In [10], BK was renormalized in four different RI-SMOM schemes. Here we generalise this
procedure to the case of operator mixing. The operator Q1 belongs to the (27,1) representation
of SU(3)L× SU(3)R, whereas Q7 and Q8 belong to (8,8). Thus, if chiral symmetry is realised,
the renormalization pattern is the following (in order to simplify the notations we drop the super-
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script 3/2):

QR
1 = Z(27,1) Qbare

1 (3.1)

(
QR

7
QR

8

)
= Z(8,8)

(
Qbare

7
Qbare

8

)
=

(
Z77 Z78

Z87 Z88

) (
Qbare

7
Qbare

8

)
. (3.2)

Moreover the renormalization factors of these operators are related to those of ∆S = 2 operators
relevant for neutral kaon mixing within and beyond the Standard Model, which have been already
studied on the lattice (see e.g. [13, 14, 15, 16]). For example Z(27,1) is the same as ZVV+AA = ZBK Z2

A
of [10]. For completeness we repeat here some details of this computation: first we consider the
process

d(p1)s̄(−p2)→ d̄(−p1)u(p2) (3.3)

with p2
1 = p2

2 = (p1− p2)2 = µ2 for a variety of momenta satisfying this condition. We call Λ
i j,kl
αβ ,γδ

the corresponding amputated Green function evaluated on Landau gauge-fixed configurations (the
colour indices i, j, . . . and Dirac indices α,β , . . . correspond to the external states). We then have
to project this Green function onto its Dirac-colour structure, but since µ 6= 0 the choice of the
projector is not unique. We define two projectors (NC is the number of colours):

P(γµ ) i j,kl
αβ ,γδ

=
1

128Nc(Nc +1)
[
(γ L

µ )βα(γ L
µ )δγ

]
δ

i j
δ

kl (3.4)

P(6q) i j,kl
αβ ,γδ

=
1

32q2Nc(Nc +1)
[
(6qL)βα(6qL)δγ

]
δ

i j
δ

kl . (3.5)

which act on Λ in the following way:

M ≡ P{Λ} ≡ Pi j,kl
αβ ,γδ

Λ
i j,kl
αβ ,γδ

(3.6)

To renormalize the quark field we use two schemes: the γµ -scheme and the 6q-scheme:

Z(6q)
q =

qµ

12q2 Tr[Λµ

V 6q] (3.7)

Z(γµ )
q =

1
48

Tr[Λµ

V γ
µ ] , (3.8)

where Λ
µ

V is the amputated Green function of the conserved vector current. The renormalization
factor Z(A,B)

(27,1) in the scheme S = (A,B) is then obtained by imposing

Z(A,B)
(27,1) = (Z(B)

q )2[P(A){Λ}]−1 (3.9)

where A and B can be either γµ or 6q, in this way we have defined four different non-exceptional
RI-SMOM schemes.

For the electroweak penguins we generalise the previous equations to the operator mixing
case: they are now two different vertex functions Λ7 and Λ8 and two projectors P7 and P8 given by[

P(γµ )
7

]i j,kl

αβ ,γδ

=
[
(γ L

µ )βα(γ R
µ )δγ

]
δ

i j
δ

kl (3.10)[
P(γµ )

8

]i j,kl

αβ ,γδ

=
[
(γ L

µ )βα(γ R
µ )δγ

]
δ

il
δ

jk (3.11)
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in the γµ scheme and [
P(6q)

7

]i j,kl

αβ ,γδ

=
1
q2

[
(6qL)βα(6qR)δγ

]
δ

i j
δ

kl (3.12)[
P(6q)

8

]i j,kl

αβ ,γδ

=
1
q2

[
(6qL)βα(6qR)δγ

]
δ

il
δ

jk . (3.13)

in the 6q scheme. Let us call M the matrix defined by

M(A)
i j = P(A)

j {Λi} , (i, j = 7,8) , (3.14)

where the projector acts in the same way as in Eq. (3.6). The two by two renormalization matrix
Z(A,B) in the scheme S = (A,B) is then defined by

Z(A,B) = (Z(B)
q )2 F

[
M(A)

]−1
, (3.15)

where F is the tree-level value of the matrix M.

4. Computation of the Z-factors at low energy

As explained in the Introduction, since the extraction of the bare matrix elements is done on
the coarse ISDSR lattice, the first step consists in computing the renormalization factors at low
energy (µ0 = 1.145 GeV) on the same lattice. We follow the procedure described in Section 3 and
obtain after a chiral extrapolation

Z(γµ ,γµ )
(27,1) (µ0) = 0.443(01) , Z(γµ ,γµ )

(8,8) (µ0) =

(
0.505(01) −0.114(01)
−0.022(03) 0.231(02)

)
, (4.1)

Z(6q,6q)
(27,1)(µ0) = 0.489(01) , Z(6q,6q)

(8,8) (µ0) =

(
0.510(02) −0.116(01)
−0.077(06) 0.305(04)

)
, (4.2)

where the quoted errors are statistical only. Here and in the remainder of this paper we estimate
and propagate the statistical errors by using 100 bootstrap samples.

We have done the computation for the four different non-exceptional schemes defined in sec-
tion 3, but here and in the remainder of the text we choose to quote only the results in the (γµ ,γµ)
and in the (6q, 6q)-scheme. In Fig. 2 we show the chiral extrapolation of the renormalization factor
Z11 = Z(27,1) in the (γµ ,γµ)-scheme, evaluated at the scale µ0. Our setup is unitary in the light sec-
tor, but the strange quark is partially quenched: we consider only degenerate valence quark masses
which are set equal to the sea light quark masses and extrapolated to zero, whereas the sea quark
mass of the strange is fixed (to its physical value). As a consequence our results are affected by a
small systematic error, which was evaluated in [10] for the (27,1) operator.

5. Computation of the non-perturbative running

We now consider two fine Iwasaki lattices, the details of which can be found in [17, 18]. There
we compute the renormalization factors following again Section 3. In particular we obtain M in

6
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the four different RI-MOM schemes (in the following M can either be a scalar – see Eq. (3.6) – or
a matrix – see Eq. (3.14) – depending if we consider the multiplicative renormalization case or the
operators mixing case). In order to introduce the step-scaling matrix, we follow [8]: at finite lattice
spacing a and for a given renormalization scale µ we consider

RS (µ,a) = lim
m→0

[
Λ

2
A(µ,a,m)M−1(µ,a,m)

]
, (5.1)

and we define the step scaling

σ
S (µ,sµ) = lim

a→0
Σ

S (µ,sµ,a) = lim
a→0

[
RS (µ,a)×R−1

S (sµ,a)
]
, (5.2)

(we normalise by Λ2
A in order to cancel the quark wavefunction renormalization). One important

point is that although the quantities M, Z and R depend on the details of the computation this is not
the case for the step scaling matrix which has well-defined continuum limit and is thus universal:
it depends only on the choice of the renormalization scheme S and on the number of flavours.

When performing the continuum extrapolation, we match scales on the different lattices by
interpolating the simulated data, which are very smooth on account of our use of twisted boundary
conditions. In the right panel of Fig. 2, we show the step scaling function of the (27,1) operators in
the (γµ ,γµ )-scheme at finite lattice spacing and extrapolated to the continuum. Twisted boundary
conditions also ensure the data lie along a continuum trajectory, and with two Iwasaki ensembles
we attempt to remove the lattice artefacts by doing a linear fit in a2. Since we have only two
different lattice spacings, we choose to include a (rather conservative) systematic error coming
from the difference between the results on our finest Iwasaki lattice and the continuum-extrapolated
results. As an example, we show the continuum extrapolation of the (8,8) operators in Fig.3. With
µ0 = 1.145 GeV and µ = 3 GeV, we obtain:

σ
(γµ ,γµ )
(27,1) (µ,µ0) = 0.947(05)(01) , (5.3)

σ
(γµ ,γµ )
(8,8) (µ,µ0) =

(
0.963(06)(14) 0.376(16)(75)
0.040(19)(20) 2.174(73)(91)

)
, (5.4)

σ
(6q,6q)
(27,1)(µ,µ0) = 0.881(07)(07) , (5.5)

σ
(6q,6q)
(8,8) (µ,µ0) =

(
0.970(08)(08) 0.288(15)(55)
0.156(37)(46) 1.855(81)(36)

)
. (5.6)

The first quoted errors are statistical, while the second are the systematic from the continuum ex-
trapolation. We remind the reader that these results are universal, they depend on the choice of
scheme and on the number of flavours (here n f = 3) but not on the details of the lattice implemen-
tation.

7
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Figure 2: The left plot shows the chiral extrapolation of the renormalization factor of the (27,1) operator,
normalised by Z2

A, computed on the IDSDR lattice in the (γµ ,γµ) scheme. On the x-axis, am represents the
bare light quark mass. We show the result at finite mass and in the chiral limit. On the right we show the
non-perturbative scale evolution of the same operator in the same scheme, at finite lattice spacing and in the
continuum limit.

6. Results in MS

The matching to MS is performed at the scale µ = 3 GeV where perturbation theory is expected
to converge rather well. With αMS

s (3 GeV) = 0.24544, the matching factors are [9]:

CMS←(γµ ,γµ )
(27,1) (3 GeV) = 1.00414 (6.1)

CMS←(γµ ,γµ )
(8,8) (3 GeV) =

(
1.00084 −0.00253
−0.03152 1.08781

)
(6.2)

CMS←(6q,6q)
(27,1) (3 GeV) = 0.99112 (6.3)

CMS←(6q,6q)
(8,8) (3 GeV) =

(
1.00084 −0.00253
−0.01199 1.02921

)
. (6.4)

Finally the Z-factors in MS are given by

ZMS(µ) = CMS←S (µ)×σ
S (µ,µ0)×ZS (µ0) , (6.5)

we obtain:

ZMS←(γµ ,γµ )
(27,1) (3 GeV) = 0.421(02)(00) (6.6)

ZMS←(γµ ,γµ )
(8,8) (3 GeV) =

(
0.479(03)(07) −0.024(04)(17)
−0.045(11)(11) 0.543(18)(23)

)
(6.7)

ZMS←(6q,6q)
(27,1) (3 GeV) = 0.427(03)(03) (6.8)

ZMS←(6q,6q)
(8,8) (3 GeV) =

(
0.473(05)(06) −0.026(05)(17)
−0.070(23)(25) 0.564(27)(13)

)
, (6.9)
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Figure 3: Continuum extrapolation of the step scaling matrix elements of the (8,8) operators. At finite
lattice spacing we show the central value together with the naive statistical error. Slightly shifted to the left,
we show the error bar where we have taken into account the error from the lattice spacing. In the continuum
we add in quadrature an error which is defined to be the difference between the continuum extrapolation and
the finest lattice spacing; the resulting error is displayed at the far left.

where the first quoted error combines statistical errors, while the second is due to the continuum
extrapolation systematic in (5.2). In Eqs. (6.6-6.7-6.8-6.9), the superscript MS←S reminds us
that the Z factors were first evaluated in the scheme S . In principle the results should agree once
converted in MS, but in practice they might be a difference due to lattice artefacts from the IDSDR
lattice and due to the truncation of perturbation theory in the conversion to MS. This difference can
be use to estimate the systematics errors or the renormalization procedure.

7. Conclusion

We have computed the matching factors required for the determination of the RBC-UKQCD
collaborations’ recently completed calculation of K → ππ decays in the ∆I = 3

2 channel. The
low energy matrix elements were computed on a single, coarse (a ∼ 0.14 fm) IDSDR ensem-
ble. In order to make an end-run around the upper limit of the Rome-Southampton window, we
have calculated non-perturbative step-scaling functions on IW lattices with smaller lattice spacings
(a∼ 0.114 fm and 0.086 fm), and extrapolated them to the continuum. The use of twisted bound-
ary conditions is a crucial element that makes this possible. The end result is that we can apply
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the one-loop perturbative SMOM→MS matching factors at a scale 3 GeV where perturbation the-
ory converges rather well. The use of multiple intermediate schemes gives an additional useful
handle on the effect of truncation at one loop. In the future we plan to apply the same strategy to
the ∆I = 1/2 operators, which require the computation of eye-diagrams. A complete computation
of the relevant matrix element for unphysical kinematics has been recently published in [19] and
reported at this conference [20].
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