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By numerically integrating the differential equations of Stochastic Perturbation Theory, Numeri-

cal Stochastic Perturbation Theory can perform high order perturbative calculations in lattice

gauge theory. We report on the computation of renormalization constants for Iwasaki gauge ac-

tion and Wilson fermions. We generated configurations at different lattice volumes V=124, 164,

204, 244, and 324. To remove the effect of finite time step in the integration ofstochastic differ-

ential equations, for each volume we generate configurationat different time stepτ=0.010, 0.02,

and 0.030. Renormalization constants are defined in the RI’-MOM scheme. We extrapolate them

to the continuum limit and also correct for finite volume effects. Here we present one loop results,

checking that they are consistant with analytical results.
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1. Introduction

This is the era of high precision Lattice calculations, aiming at taking all the errors under
control. The computation of renormalization constants are one important source of errors. The
debate on how to keep them under control often appears to boil down to theissue of Perturbative
vs Non-Perturbative computations. We think the real issue is to correctly enumerate all the sources
of systematic errors, which for sure include the following:

1. In the perturbative case, one must tackle truncation errors.

2. Since one often defines renormalization constants in massless schemes, inthe Non-perturbative
case there are often chiral extrapolations in place.

3. In both the Perturbative and Non-Perturbative case, one aims at extrapolating results to the
continuum limit.

4. As a separate issue, finite size effects are often in place as well: this holds for example in the
RI’-MOM scheme, which is defined in infinite volume and necessarely simulatedon finite
volumes.

We compute renormalization constants using our method: Numerical Stochastic Perturbative The-
ory (NSPT). This enables us to reach three loop results. Here our goalis to compute renormal-
ization constants for Iwasaki gauge action and Wilson fermions. A final goal is to bridge between
Perturbative and Non-Perturbative results.

2. Methods

We briefly enumerate a few points about our method, enlighting the control onerrors.

2.1 Numerical Stochastic Perturbation Theory

In order to get high order perturbative expansions, we use NumericalStochastic Perturbation
Theory. For a comprehensive introduction, the reader is referred to the literature[1]. Here we sim-
ply sketch the very basics facts.

In the Stochastic Quantization framework

∂
∂ t

φη(x, t) = −
δS[φ ]

δφη(x, t)
+η(x, t).

lim
t→∞

〈φ(x1, t) . . .φ(xn, t)〉η = 〈φ(x1) . . .φ(xn)〉.

we expand the solution to Langevin equation

φη(x, t) = φ (0)
η (x, t)+ ∑

n>0

gnφ (n)
η (x, t)

and compute observables order by order

O

[

∑
n

gnφ (n)
η (x, t)

]

= ∑
n

gnO(n)(x, t).
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The method (which can be taylored to lattice gauge theories) is thus a numericalone, altohough
perturbative. It has already proved to be very effective in enabling high loops computations, thus
circumventing to a large extent truncation errors.

2.2 RI’-MOM scheme

We compute quark bilinears bracketted in fixed momentum states in Landau gauge and ampu-
tate them to getΓ functions

∫

dx〈p| ψ(x)Γψ(x) |p〉 = GΓ(p) GΓ(p) → ΓΓ(p).

We then project on tree-level structures

OΓ(p) = Tr
(

P̂OΓΓΓ(p)
)

.

We define the field renormalization

Zq(µ,g) = −i
1
12

Tr(/pS−1(p))

p2

and finally define renormalization constants

ZOΓ(µ,g)Z−1
q (µ,g)OΓ(p)|p2=µ2 = 1.

The resulting renormalization scheme is RI’-MOM, for which anomalous dimensions are
know to three loops[2]. This is a very important advantage for us: by taking the relevant anomalous
dimensions from continuum computations, we do not need to fit logarithms in ourprocedure (see
later, subsection 2.5). This also means that three loops is the highest we cango: not having at
our disposal anomalous dimensions at higher loops, computing them would require an irrealistic
numerical precision.

2.3 No chiral extrapolation: we stay at zero mass

We do not need any chiral extrapolation. In the (Wilson) quark self-energy there is an addittive
counter term (critical mass)

aΓ2(p̂,m̂cr,β−1) = aS(p̂,m̂cr,β−1)−1

= i /̂p+ m̂W(p̂)− Σ̂(p̂,m̂cr,β−1)

Σ̂(p̂,m̂cr,β−1) = Σ̂c(p̂,m̂cr,β−1)+ Σ̂V(p̂,m̂cr,β−1)+ Σ̂o(p̂,m̂cr,β−1)

Σ̂(0,m̂cr,β−1) = Σ̂c(0,m̂cr,β−1) = m̂cr

which we plug in order by order (in our notation ˆp = pa), since it is known from analytical com-
putations to two loops[3]. At three loops we get a novel result from our computations.
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2.4 Hyper cubic Taylor expansion and Continuum limit

Continuum limit comes from fitting expansions[4], e.g. for the quark self-energy (p̂ = pa)

Σ̂(p̂,m̂cr,β−1) = Σ̂c(p̂,m̂cr,β−1)+ Σ̂V(p̂,m̂cr,β−1)+ Σ̂o(p̂,m̂cr,β−1)

Let’s H4-Taylor expand it

Σ̂V = i ∑
µ

γµ p̂µ

(

Σ̂(0)
V + p̂2

µ Σ̂(1)
V + p̂4

µ Σ̂(2)
V + . . .

)

Σ(n) are also H4-Taylor expanded

Σ̂(n)
V = α(n)

1 1+α(n)
2 ∑

ν
p̂2

ν +α(n)
3 ∑

ν
p̂4

ν +α(n)
4 ∑

ν 6=ρ
p̂2

ν p̂2
ρ +O(a6)

The only term surviving thea→ 0 limit is α(0)
1 . Notice that this expansion is free of logarithmic

contributions, since one loop anomalous dimension for the quark field vanishes in Landau gauge. In
a general one loop case a logarithm would be present, whose coefficient is known from continuum
computation and thus does not need to be fitted.

2.5 Evaluating finite size effects: get toL → ∞

Taming finite size effects is a key issue: RI’-MOM is actually defined in infinite volume. On
dimensional grounds we expect (take once againΣ(n)) pL effects

Σ̂(n)
V (p̂, pL) = Σ̂(n)

V (p̂,∞)+
(

Σ̂(n)
V (p̂, pL)− Σ̂(n)

V (p̂,∞)
)

= Σ̂(n)
V (p̂,∞)+∆Σ̂(n)

V (p̂, pL)

so that a better expansion to fit is

Σ̂(n)
V (p̂, pL) = α(n)

1 1+α(n)
2 ∑

ν
p̂2

ν +α(n)
3 ∑

ν
p̂4

ν +

+α(n)
4

(

∑
ν

p̂2
ν

)2

+∆Σ̂(n)
V (p̂, pL)+ . . .

In first approximation

∆Σ̂(n)
V (p̂, pL) ∼ ∆Σ̂(n)

V (pL)

But pµL =
2πnµ

L L = 2πnµ , i.e. we expect the same correction on different lattice sizes for the same
{n1,n2,n3,n4}. This enable us to fit only a few extra parameters[5].

3. Results

We are running our simulations at bothnf = 0 andnf = 4 (the latter being relevant for phe-
nomelogy; it could be cross-checked with Non-Perturbative results from the ETM Collaboration).
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We generate configurations at different lattice volumes V=124, 164, 204, 244, and 324. Since
we adhere to the simplest (Euler) scheme in the integration of our (stochastic)differential equa-
tions, in order to remove the effect of finite time step we generate configurations at different time
stepτ=0.010, 0.02, and 0.030 (for each volume).

We are still in the process of generating configurations and measuring. The preliminary results
which we presented at the Lattice 2011 Conference and that we report on here come from only a
few measurements as the table below shows:

τ = 0.010 τ = 0.020 τ = 0.030

V=124 80 80 80

V=164 57 57 57

V=204 30 30 29

V=244 20 20 20

V=324 3 2 2

To verify the correctness of our codes we first measured one loop results, to be checked against
the known analytical results[6].
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Figure 1: First loop critical mass andZq. The lattice volumes areV = 124 (green diamonds), 164 (black
stars), 204 (red squares), and 244 (blue circles). Analytical result is black star, while the red circle is our
result, as obtained by fitting data to the function.

4. Conclusions and Future

This is work in progress. We are still in the process of enlarging our statistics, focusing most
on thenf = 4 case. We also point out that there is one result missing to perform three loops
computations. In order to benefit from the continuum results, we need to compute the two loops
matching of the lattice Iwasaki coupling to the continuum coupling (a similar computation has been
performed for the Symanzick action[7]).
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Figure 2: First loop results forZs, Zp andZq, in good agreement with analytical results (same notationsas
Figure 1).
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