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1. Introduction

In lattice gauge theories, a number of different lattice prescriptions of the continuum action
can be used. Different lattice actions often provide specific advantages and disadvantages, such
that in practice various actions are in use. Each of these yields different Feynman rules, such that a
given lattice perturbation theory calculation in principle has to be repeated if one chooses to work
with another action. It is thus beneficial if one uses an automated method to derive the Feynman
rules. Such a method is discussed in [1, 2] and a variant of it will be employed in this work.

In the Schrödinger functional scheme [9, 7], two more issues arise. Firstly, one has to take
the induced background field into account when constructing the Feynman rules. This can be
accomplished with a modified version of the aforementioned method, as discussed in [8] for the
gauge sector. Secondly, the Schrödinger functional boundary conditions increase the number of
Feynman diagrams contributing to a process already at one loop order.

One of the authors (D.H.) developed the pastor software package, which addresses all of
these issues. For a rather general class of correlation functions and actions in the Schrödinger
functional, pastor automatically calculates the perturbative expansion up to order g2

0 in the bare
coupling, including automatic generation of vertices and diagrams.

In the following, we will describe the methods used by pastor to generate diagrams and ver-
tices and present an example calculation, involving correlation functions in heavy quark effective
theory (HQET).

2. Background

We work in the Schrödinger functional scheme, using the same notation as in [6] with a more
general fermion action SF [ψ,ψ]. The quark fields ψ,ψ obey the boundary conditions

P+ψ(x)|x0=0 = ρ(x), P−ψ(x)|x0=T = ρ
′(x),

ψ(x)P−|x0=0 = ρ(x), ψ(x)P+|x0=T = ρ
′(x). (2.1)

The spatial boundary conditions are L-periodic up to a phase, ψ(x + Lk̂) = eiθk ψ(x). The Dirac
operator is defined through the action,

δ

δψ(x)
SF = (D+m)ψ(x), 0 < x0 < T, (2.2)

and we define the kernels K,K′, K̃, K̃′ through the action at the boundary,

− δ

δρ(x)
SF =−∑

y
ψ(y) K(y,x),

δ

δρ(x)
SF =−∑

y
K̃(x,y) ψ(y)

− δ

δρ ′(x)
SF =−∑

y
ψ(y) K′(y,x),

δ

δρ
′(x)

SF =−∑
y

K̃′(x,y) ψ(y), (2.3)

where we now understand 0≤ y0 ≤ T and the kernels obey the boundary conditions

P+ K(y,x)|y0=0 = K̃(x,y) P−|y0=0 = P−K′(y,x)|y0=T = K̃(x,y) P+|y0=T = 0. (2.4)
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The SU(N) lattice gauge fields Uµ(x) = U−1
−µ(x+aµ̂) in the Schrödinger functional are L-periodic

in the spatial directions and obey the boundary conditions

Uk(x)|x0=0 = Wk(x), Uk(x)|x0=T = W ′k(x). (2.5)

The boundary links U0(x) are unrestricted. The relevant degrees of freedom for perturbation theory
are the gauge fields in an infinitesimal neighborhood of the classical solution Vµ minimizing the
action under the boundary conditions (2.5). These fields may be parametrized as

Uµ(x) = exp{g0 qµ(x)}Vµ(x). (2.6)

2.1 Automatic Generation of Feynman Diagrams

Following the basic steps of [6] using the general form of the fermion action defined above,
one can split up the expectation value of any observable O given in terms of the quark fields ψ,ψ

and the gluon fields Uµ(x) in a gauge and fermion average 〈O〉= 〈[O]F〉G, for details c.f. [6]. The
fermion average may be calculated using the generating functional

Z F [ρ,ρ ′,η ,ρ,ρ ′,η ] =
∫

D [ψ,ψ]exp{−SF [ψ,ψ]+ψ(x)η(x)+η(x)ψ(x)} , (2.7)

with the source fields η(x),η(x), 0 < x0 < T . Useful observables may also contain the boundary
fields [10]

ζ (x) =
δ

δρ(x)
, ζ (x) =− δ

δρ(x)
, ζ

′(x) =
δ

δρ
′(x)

, ζ
′
(x) =− δ

δρ ′(x)
. (2.8)

After these derivatives are applied to the Boltzmann factor in (2.7), the fields ρ,ρ ′,ρ,ρ ′ are set to
zero. Defining the Green’s function S of the Dirac operator for a given gauge field,

(D+m)S(x,y) = δxy, 0 < x0 < T, P+ S(x,y)|x0=0 = P− S(x,y)|x0=T = 0, (2.9)

one may construct the general classical solution ψcl (and its adjoint ψcl accordingly)

ψcl(x) = ∑
y,z

S(x,y){K(y,z)ρ(z)+K′(y,z)ρ
′(z)}, 0 < x0 < T, (2.10)

such that (D+m)ψcl(x) = 0 for 0 < x0 < T with the boundary conditions

P+ψcl(x)|x0=0 = ρ(x), P−ψcl(x)|x0=T = ρ
′(y). (2.11)

Making use of ψcl, the generating functional (2.7) may be expressed in a simple way,

lnZ F = lnZ F [0]+∑
x,y

η(x)S(x,y)η(y)+∑
x
{η(x)ψcl(x)+ψcl(x)η(x)}

+∑
x,y

{
ρ(x)K̃(x,y)+ρ

′(x)K̃′(x,y)
}

ψcl(y). (2.12)

With (2.12), one may calculate all basic Wick contractions by differentiation with respect to the
boundary values and source fields. All of those contractions can be written in terms of the propa-
gator S and the kernels K,K′, K̃, K̃′. For example, consider

[ψ(x)ζ (z)]F =
1
Z

(
δ

δη(x)

)(
− δ

δρ(z)

)
Z

∣∣∣∣
ρ=...=η=0

= ∑
y

S(x,y)K(y,z)P+. (2.13)
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We may now expand S in powers of the bare coupling g0 by solving[
D(0) +m+

∞

∑
i=1

gi
0 D(i)

]
∞

∑
j=0

g j
0 S( j)(x,y) = δxy (2.14)

order by order in g0 [6]. This involves the inversion1 of (D(0) + m) to obtain S(0) and then the
explicit form of D(i) is needed to construct the higher order terms, e.g.

S(1)(x,z) =−∑
y

S(0)(x,y)D(1) S(0)(y,z). (2.15)

In the following section, we will present a method to calculate the vertices D(i) for a general action.
This method is then also used to construct the g0-expansion of K,K′, K̃ and K̃′, such that we get
e.g. for (2.13)

[ψ(x)ζ (z)]F = ∑
y

(
∑

i
gi

0 S(i)(x,y)

)(
∑

j
g j

0 K( j)(y,z)

)
P+. (2.16)

The pastor package consists of a frontend written in Python, whose input is an observable,
consisting of a number of traces Ti, 2 where each trace is a product of a number of propagators S j,
boundary kernels Kk,K′l , . . ., and insertions κm coming from terms of the form ∑x,y ψ(x)κ(x,y)ψ(x)
in the observable. It then performs the g0-expansion symbolically in the spirit of (2.16), aborting
at O(g2

0). This yields expressions with two free gluons, qa
µ(x),qb

ν(y).3 The last step is to calculate
the gluon average, which is accomplished at order g2

0 by contracting the free gluons into a gluon
propagator Dab

µν(x,y). After gauge fixing, the latter is calculated in the same fashion as the fermion
propagator. The backend is a C++ library that constructs vertices from any gauge or fermion action,
which can be passed to the code at run-time in a symbolic form, as will be explained in detail in the
next section. The frontend will produce C++ programs making use of the backend to calculate all
diagrams up to and including order g2

0, with all required counter-terms. The package uses spatial
translational invariance, evaluating the Feynman diagrams in a x0,p representation.

2.2 Automatic Generation of Vertices

The automatic generation of vertices in the Schrödinger functional for the gluon sector has
been discussed in depth in [8]. We will focus here on the fermion sector. A typical bilinear fermion
action SF may be written as a sum over parallel transporters Ui(xi,yi) with weights ci and spin
matrices Γi (which can be Pauli or Dirac matrices, as well as scalars),

SF [ψ,ψ,U ] = ∑
i

ci ψ(xi)Γi Ui(xi,yi)ψ(yi), Ui(xi,yi) = U i
ni

. . .U i
2U i

1. (2.17)

We then express the D(k) in the expansion of the Dirac operator (2.14) in terms of the qµ field,

D(k) =
1
k! ∑

x1,µ1,a1

. . . ∑
xk,µk,ak

qa1
µ1

(x1) . . .qak
µk

(xk) ∑
y,z,b,c

ψb(y)V
a1,...,ak,b,c

µ1,...,µk (x1, . . . ,xk;y,z)ψc(z). (2.18)

1For many actions, the free propagator is known. To stay independent of specific formulations of the lattice theory,
pastor includes a number of inverters to calculate the free propagator numerically.

2An arbitrary number of traces is at the time of writing only supported for a trivial background field Vµ (x)≡ 1.
3With a non-trivial background field, the situation is more complicated, c.f. [12].
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The vertex functions V may then be written as symmetrized products of reduced vertex functions
Yµ1,...,µk(x1, . . . ,xk;y,z) and color factors C [2], where the reduced vertex functions are calculated by
summing over contributions from each of the terms in (2.17). The part coming from an individual
parallel transporter Ui can in turn be expressed as a function of the positions xi

j and the Lorentz
indices µ i

j. The basic strategy is to start from the expansion fo a single link (2.6) and build up the
expansion of any parallel transporter iteratively by multiplication.

For a trivial background field Vµ ≡ 1, the color factor is simply given by a product of generators
T a of SU(N),

Ca1,...,ak,b,c = (T a1 . . .T ak)bc. (2.19)

For an Abelian background field as defined in [7], the color factor assumes a more complicated
form [8],

Ca1,...,ak,b,c(t,A,B,C,D) =

[
Ia1 . . . IakV (t)AeiE B exp

{
i/2

k

∑
j=1

(
C jφ

′
a j

+D jφa j(t)
)}]

bc

, (2.20)

where the scalars A,B and the k−vectors C,D may again be calculated iteratively for each of the
parallel transporters in (2.17) starting from a single link. E ,φ ′, and φ(t) are depending on the
background field and the Ia are another set of generators of SU(N). Both (2.19) and (2.20) can be
chosen to be used in pastor, such that one can switch between Abelian and trivial background
field easily. Given a number of parallel transporters Ui e.g. as lists of directions µ i

j, the corre-
sponding weights ci, and spin matrices Γi as in (2.17) as input, the C++ backend of pastor will
calculate the vertices V to any order in g0. The gluon action is treated in a similar way [8]. The
pastor backend may hence be used for perturbative calculations in the Schrödinger functional
independently of the frontend, and therefore in principle also beyond the g2

0 terms.

3. Application to HQET

Any expectation value 〈O〉 in HQET may be expanded in the following way [14],

〈O〉= 〈O〉stat +ωspin〈O〉spin +ωkin〈O〉kin, 〈O〉kin = ∑
y
〈OOkin(y)〉stat, etc., (3.1)

where 〈·〉stat is the path integral average using the static Lagrangian Lstat and Okin,Ospin contribute
at O(1/m). In the first of a series of publications on HQET including 1/m effects, the ALPHA
collaboration describes the non-perturbative determination of the required parameters ωkin etc. [3].
The main idea of the method employed there may be summarized as follows. In a physically small
volume with spatial extend L1, where simulations in HQET and QCD are feasible, one matches the
two theories by requiring the equality of a number of observables Φi in HQET at various lattice
spacings with the continuum limit of their QCD counterparts. One then proceeds with a finite size
scaling method to determine Φi in a larger volume L2. This procedure involves a number of step
scaling functions Σi j. To demonstrate the effectiveness of pastor , we calculated the one-loop
cutoff effects of the functions Σ33 and Σ44 [3],

Σ33(L1) = RδA(L2)/RδA(L1), Σ44(L1) = Rkin
1 (L2)/Rkin

1 (L1), (3.2)

RδA(L) =

(
f stat
δA (θ , T

2 )
f stat
A (θ , T

2 )
−

f stat
δA (θ ′, T

2 )
f stat
A (θ ′, T

2 )

)
T=L

, Rkin
1 (L) =

(
f kin
1 (θ)

f stat
1 (θ)

− f kin
1 (θ ′)

f stat
1 (θ ′)

)
T= L

2

. (3.3)
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The correlation functions in these expressions are part of the expansion (3.1) of the heavy-light
correlation functions

fA(θ ,x0) =−a6

2 ∑
y,z
〈(AI)0(x)ζ h(y)γkζl(z)〉, f1(θ) =− a12

2L6 ∑
u,v,y,z

〈ζ ′l(u)γ5ζ
′
h(v)ζ h(y)γ5ζl(z)〉.

fδA is defined similar to fA, making the replacement (AI)0 → δA0. The insertion δA stems from
the O(1/m) correction to the static-light axial current. For the discretization of the light flavor, we
choose O(a) improved Wilson fermions, the gauge action used here is the Wilson plaquette action.

3.1 Perturbative Improvement of Observables

Perturbative improvement [5] has been shown to be an effective method to speed up the ap-
proach to the continuum limit of a number of observables. The aim is to remove at a given order of
perturbation theory all O((a/L)n log(L/a)m) cutoff effects. One defines the improved observable

OI(a/L) =
O(a/L)

1+δ (a/L)
, δ (a/L) =

O(a/L)−O(0)
O(0)

= δ
(0)(a/L)+g2

0δ
(1)(a/L)+ . . . . (3.4)

The tree level improvements δ
(0)
i j have been calculated for the step-scaling functions Σi j in [3]. The

one loop improvements δ
(1)
33 and δ

(1)
44 for Σ33 and Σ44 are presented in figure 1, together with the tree

level improved Monte Carlo data from [13]. One should keep in mind that our investigation uses a
different discretization (Eichten-Hill, [11]) than the ones (HYP1/2) employed in [3]. However, the
sizes of the cutoff effects are qualitatively similar. Perturbation theory provides an interesting hint
for non-perturbative computations: the cutoff effects are minimal for θ = 0.5,θ ′ = 1.0.

3.2 Extrapolation of perturbative data.

To perform the necessary continuum extrapolations for (3.4), we used the method of successive
fits proposed in [12]. To have good control over cutoff effects, we performed calculations with
L/a = 4,6, . . . ,48 for all observables. pastor provides an option to perform all computations
in long double precision to estimate the roundoff-errors, wich turn out to be negligible in our
case.
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