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1. Motivation

Technicolor [1, 2] was quickly specialized to walking teatolor in order to address flavor-
changing neutral currents [3, 4, 5, 6, 7, 8, 9]. Higher regpmétions may avoid problems with
the S-parameter [10, 11]. This motivates the study of Mitikivalking Technicolor [12] using
lattice techniques, in order to see where this theory ligh waspect to the conformal window.
Does it really walk? Here Creutz ratios suggest and answiee approach is different from the
Schrédinger functional method that was employed for SU&)og group with triplet fermions in
[13], SU(3) gauge group with sextet fermions [14], and Miaitwalking Technicolor [15, 16, 17].
The latter works indicate the existence of an infrared fixeiti(p We obtain results consistent with
that conclusion by this alternate Creutz ratio approach.

2. Themethod

In [18] a method for measuring the running gauge couplinghenlattice using Creutz ratios
was proposed. In [19, 20] this method was applied to pure Hditke Yang-Mills, and in [20, 21]
this method was applied in a preliminary way to SU(3) gaugeigiwith sixteen triplet fermions,
and more recently in [22] to SU(2) gauge group with eight ftawaf fundamental representation
fermions. We will use this approach to search for the phemamef backward running, which is a
smoking gun for a nontrivial infrared fixed point, since fama running is assured at weak coupling
by perturbative methods. We apply the method of Creutzgdtidhe theory of Minimal Walking
Technicolor: SU(2) gauge theory with two flavors of fermionghe adjoint representation. Our
lattice action is Wilson fermions and a plaquette gaugeacti

2.1 Outline

The proposal [18] defines the running coupligd-) at a scale. = Na associated with the
spatial extent of the lattice, wheMis the number of sites in spatial directions anig the lattice
spacingt This is done through the Creutz ratio [23]:
W(,H)W(l —1,3-1)
W(I,J—-1)W(I —1,J)
whereW(l,J) is the expectation value of the trace of the rectangutard Wilson loop on the
lattice. Throughout, we only considgi(l,1). The Creutz ratio is interpolated between valuet of
to define a related functiofi(R) with R= R/a continuous. The interpolation requires a matching
of values at the points whefeis half-integral:
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the logic being that the Wilson loops appearing in the Creatip have average siZe In fact,
taking the classical continuum limit, one finds that the @eatio is a finite difference approxi-
mation:
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whereWeont (R, T) :xW(IQ,'f) is the Wilson loop in the continuum languagehere should not be
confused the temporal extent of the lattice.
In the Creutz ratio method for determiniggL ), we choose

r =R/L = fixed. (2.4)

Note also that we have to deal with a fermion magswhich we take to be the PCAC mass. Our
approach will be to measuggL ) at nonzerarng and then extrapolate to timay = O limit.

The important thing that Bilgici et al. have noted is that aedoop in lattice perturbation
theory, including the effect of bosonic zero modes,

R?X1-100p(L,@R) = k(r,N)g3, N=L/a (2.5)

which defines the quantity(r,N). Here,go is the bare coupling. It was found in [18, 19] that in the
limit of large N, k(r,N) — k(r), so that it is ar. anda independent quantity in the continuum limit.
Thus we writek(r) in what follows, and will define the running coupling in teristhis N — oo
normalization factor.

Thus we can make dn-dependent nonperturbative definition of the running ciogpd using
the value off (R) obtained from a simulation with bare coupligg?

1
k(r)

To get a handle og?(L), we can study the scaling of the function:

(L) = lim R’%(L,alR), Ra/L=R/N=r =fixed (2.6)
a—

PN.rL) = - RR(N.aR) @7)
k(r) R=rN
On the right-hand side, the nonperturbatjéN,a|R) is evaluated with system size Clearly if
L is held fixed whileN is increased, the lattice spacing is decreasing towarddahgnzium limit.
Thusg?(N,r,L) of (2.7) defines the running coupling in a particular (notyrdative) scheme:

G*(r|L) = lim g*(N,r,L). (2.8)

The constant is part of the renormalization scheme.

A step-scaling analysis is used to follow the running of theging g with the scald.. We will
not actually use step-scaling in order to search for thegmess of an infrared fixed point. Rather,
there is a simpler, qualitative behavior that we are looKorgas we now describe.

2.2 Expectations

In a confining theoryg?(xN, r,xL) > g?(N,r,L) for x > 1. This type of relationship means that
if we hold B fixed, the measured value gf(N,r,L) increases aBl increases, since = Na will
increase proportionately.

On the other hand, if there is an infrared fixed point, the Ondeof curves with increasing
N reverses once the bare couplifiggoes past the fixed poinB(< B.(N)), andg?(xN,r,xL) <

20ften below we will use the lattice couplingy= 4/g(2).
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g?(N,r,L) occurs forx > 1. Here we note that the fixed poift depends o, due to lattice
artifacts. Indeed, such a “backwards running” was seernratgtcouplings in the SU(3) theory
with sixteen fundamental flavors in the work [21, 20]. We estmomething like this to also occur
in the present theory at strong coupling, under the assomgat there is an infrared fixed point.

From the vantage point of the two behaviors that we have jestamted, it is clear that a full
blown step scaling analysis is not needed in order to detegbtesence of an infrared fixed point.
All that is needed is just to show the reversal of orderindwétspect td. at smallg. This will be
the focus of our analysis.

3. Analysis

3.1 Smearing

We follow Bilgici et al. and apply APE smearing [24, 25] forettinks that are used in the
calculation of Wilson loops. We take the smearing paramketdre = 0.5. We find that two
smearing steps works well for yielding the perturbativedguired increase ig?(N,r,L) with N at
weak bare coupling. For this reason we use two smearing giepsghout this work.

3.2 Interpolation

In order to obtain a value af for r = 1/4 with arbitraryN, it is necessary to interpolate to
values ofRthat are not half-integral. For this purpose Bilgici et atroduce a quadratic hypothesis.
However, the obtained value is somewhat different if a cliyjgothesis is chosen. Furthermore,
the result depends on which points are included in the fit. ®We [adopted the strategy of varying
all these choices and then using the variatiokgsfas a measure of systematic error in the method.
The mean value dfg? is used as our final estimate.

3.3 Reaults

Now that we have outlined how we obtained the valudgoig?(N,r,L), we proceed to discuss
our resultss We have measuredy? for latticesN = 10,12, 16, 20,24 with bare couplingd = 2.25.
Note that this value of is at weaker coupling than the one where a bulk phase transitcurs,
B ~ 2, as was found in [26]. It is also at a stronger coupling tHe& where there was some
evidence for fixed point behavior in the Schrodinger funwiostudy [15]. Thus this point is
continuously connected to the continuum limit through &niass, but is expected to be on the
strong side of the infrared fixed point. That is, we have reascsuspect backwards running for
the choicef3 = 2.25. We have performed our simulations for five values of the lmaassmga,
shown in Table 1. We have measured the PCAC mgadrom the largest latticedN = 24), where
there is the least systematic error from finite volume. Tlasealso given in Table 1. We then
extrapolatek(r)g?(N,r,L) to themg = O limit with quadratic and cubic fits to the data. Systematic
errors are included in the uncertainties when performirgyfith In the case of the quadratic fit,
we also consider the case where only the lightest four masseimcluded in the fit. The results
for the measured values kf*> are summarized in Table 2 and the results of the zero massdits a

3We do not need the actual valueldf = 1/4) since it is a fixed constant independent\bof
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ma |
0.448406(5)
0.236337(4)
0.090917(2)
0.066873(6)
0.054890(3)

|_moa |
-1.000
-1.100
-1.165
-1.175
-1.180

Table 1: PCAC mass obtained from 24 48 lattices.

| | mpa=—1.000 | mpa=—1.100 | mpa=—-1.165 | mpa=-1175 | mpa=—1.180 |

10° x 20

0.6448(67)(0)

0.4832(18)(0)

0.38394(48)(0)

0.36808(87)(0)

0.3630(10)(0)

128 x 24

0.7604(6)(32)

0.5154(2)(32)

0.3884(2)(16)

0.37183(16)(66)

0.35661(19)(35)

16° x 32

0.9820(10)(37)

0.6114(8)(31)

0.3954(3)(18)

0.3647(2)(13)

0.35906(20)(97)

20° x 40

1.2621(12)(21)

0.6998(11)(28)

0.4018(3)(13)

0.3703(4)(22)

0.3474(3)(17)

243 x 48

1.6510(15)(7)

0.8109(15)(12)

0.4192(5)(10)

0.3870(24)(7)

0.3623(8)(18)

Table 2: Results forkg? for the various sizes of lattices and bare masses. The fitstiarkg? is statistical,
determined by jackknife analysis of fits to the Creutz ratisslescribed in the text. The second errdagf
is systematic, obtained from varying the method of inteioh used to obtain the valueRt= 0.25(L/a).

presented in Table 3. The results of Table 2 are displayadaldth the quadratic fits to all data in
Fig. 1.
At large mass one sees the behavior characteristic of asyimfreedom:

02(24) > g?(20) > g*(16) > g?(12) > ¢g?(10). (3.1)

In the case of the quadratic fit to all data, when we extrapdtathe chiral limit the trend reverses:
0%(24) ~ ¢?(20) < g?(16) < g?(12) ~ g?(10). (3.2)

Thus for this extrapolation we find backward running in thesshass limit. However, in the other
two extrapolations of Table 3, what we see is that there islear gattern, but instead a rough
equality:

9°(24) ~ g°(20) ~ g°*(16) ~ g*(12) ~ g*(10). (3.3)

Thus what one has in this case is evidence for an absencerohgun

The behavior that we have observed is consistent with tretesde of an infrared fixed point.
We regard our results as suggestive that Minimal Walkindhii@olor does not actually walk, but
is instead inside the conformal window. This is supportii/ghe findings of Schrddinger functional
studies, but now by a different method.

4. Conclusions

We have found that the behavior of the couplafgN,r,L) is consistent with the existence of
an infrared fixed point. Two refinements to the present studydcbe performed, which would
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Figure 1. Values ofkg? for B = 2.25,r = 1/4. At large massg? increases with increasirg, so that the
curves are ordered top to bottoh = 24,20,16,12,10. However, in the massless limit, the ordering of the
curves shows a trend of reversal, indicating backward nmni

Quadratic, last 4 pts.| Quadratic, all 5 pts. Cubic, all 5 pts.
kg | x3d.of. kg? | x¥d.of. kg? | x?/d.of.

10° x 20 | 0.3312(49)] 2.52 [0.3288(26)] 1.75 | 0.3321(58)] 2.44
12 x 24| 0.297(17)| 23.6 |0.3130(95)] 25.7 | 0.291(20)| 21.3
168 x 32| 0.319(20) | 12.7 | 0.295(11)| 19.0 | 0.327(23)| 11.4
20° x40 | 0.284(15)| 5.04 | 0.2651(85)| 7.88 | 0.288(18) | 5.36
243% 48| 0.313(18) | 7.12 | 0.268(14)| 295 | 0.321(22)| 7.81

Table 3: Results for the zero mass extrapolatiorkg? for the various sizes of lattices.

hopefully yield firmer conclusions. First, smaller PCAC ®&s should be simulated so that a
stronger case for what happens in the chiral limit can be m&s#eond, larger volumes such as
N = 32 should be simulated, so that the trends with respddtdan be amplified.
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