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1. Motivation

Technicolor [1, 2] was quickly specialized to walking technicolor in order to address flavor-
changing neutral currents [3, 4, 5, 6, 7, 8, 9]. Higher representations may avoid problems with
the S-parameter [10, 11]. This motivates the study of Minimal Walking Technicolor [12] using
lattice techniques, in order to see where this theory lies with respect to the conformal window.
Does it really walk? Here Creutz ratios suggest and answer. The approach is different from the
Schrödinger functional method that was employed for SU(3) gauge group with triplet fermions in
[13], SU(3) gauge group with sextet fermions [14], and Minimal Walking Technicolor [15, 16, 17].
The latter works indicate the existence of an infrared fixed point. We obtain results consistent with
that conclusion by this alternate Creutz ratio approach.

2. The method

In [18] a method for measuring the running gauge coupling on the lattice using Creutz ratios
was proposed. In [19, 20] this method was applied to pure SU(3) lattice Yang-Mills, and in [20, 21]
this method was applied in a preliminary way to SU(3) gauge group with sixteen triplet fermions,
and more recently in [22] to SU(2) gauge group with eight flavors of fundamental representation
fermions. We will use this approach to search for the phenomenon of backward running, which is a
smoking gun for a nontrivial infrared fixed point, since forward running is assured at weak coupling
by perturbative methods. We apply the method of Creutz ratios to the theory of Minimal Walking
Technicolor: SU(2) gauge theory with two flavors of fermionsin the adjoint representation. Our
lattice action is Wilson fermions and a plaquette gauge action.

2.1 Outline

The proposal [18] defines the running couplingg(L) at a scaleL = Na associated with the
spatial extent of the lattice, whereN is the number of sites in spatial directions anda is the lattice
spacing.1 This is done through the Creutz ratio [23]:

χ(I,J) =− ln
W (I,J)W (I −1,J−1)
W (I,J −1)W (I −1,J)

(2.1)

whereW (I,J) is the expectation value of the trace of the rectangularI × J Wilson loop on the
lattice. Throughout, we only considerχ(I, I). The Creutz ratio is interpolated between values ofI
to define a related functioñχ(R̂) with R̂ ≡ R/a continuous. The interpolation requires a matching
of values at the points wherêR is half-integral:

χ̃(R̂)≡ χ(R̂+
1
2
, R̂+

1
2
) =− ln

W (R̂+ 1
2, R̂+ 1

2)W (R̂− 1
2, R̂− 1

2)

W (R̂+ 1
2, R̂− 1

2)
2

(2.2)

the logic being that the Wilson loops appearing in the Creutzratio have average sizeR. In fact,
taking the classical continuum limit, one finds that the Creutz ratio is a finite difference approxi-
mation:

R̂2χ̃(R̂)≈−RT
∂ 2

∂R∂T
lnWcont.(R,T )

∣

∣

∣

∣

T=R
, (2.3)

1In our analysis we take temporal extentT = 2L.
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whereWcont.(R,T )≈W (R̂, T̂ ) is the Wilson loop in the continuum language.T here should not be
confused the temporal extent of the lattice.

In the Creutz ratio method for determiningg(L), we choose

r = R/L = fixed. (2.4)

Note also that we have to deal with a fermion massmq, which we take to be the PCAC mass. Our
approach will be to measureg(L) at nonzeromq and then extrapolate to themq = 0 limit.

The important thing that Bilgici et al. have noted is that at one loop in lattice perturbation
theory, including the effect of bosonic zero modes,

R̂2χ̃1-loop(L,a|R̂) = k(r,N)g2
0, N = L/a (2.5)

which defines the quantityk(r,N). Here,g0 is the bare coupling. It was found in [18, 19] that in the
limit of largeN, k(r,N)→ k(r), so that it is anL anda independent quantity in the continuum limit.
Thus we writek(r) in what follows, and will define the running coupling in termsof this N → ∞
normalization factor.

Thus we can make anL-dependent nonperturbative definition of the running coupling ḡ using
the value ofχ̃(R) obtained from a simulation with bare couplingg0:2

ḡ2(L)≡ lim
a→0

1
k(r)

R̂2χ̃(L,a|R̂), R̂a/L = R̂/N = r = fixed (2.6)

To get a handle on ¯g2(L), we can study the scaling of the function:

g2(N,r,L)≡
1

k(r)
R̂2χ̃(N,a|R̂)

∣

∣

∣

∣

R̂=rN
(2.7)

On the right-hand side, the nonperturbativeχ̃(N,a|R̂) is evaluated with system sizeL. Clearly if
L is held fixed whileN is increased, the lattice spacing is decreasing toward the continuum limit.
Thusg2(N,r,L) of (2.7) defines the running coupling in a particular (nonperturbative) scheme:

ḡ2(r|L)≡ lim
N→∞

g2(N,r,L). (2.8)

The constantr is part of the renormalization scheme.
A step-scaling analysis is used to follow the running of the couplingḡ with the scaleL. We will

not actually use step-scaling in order to search for the presence of an infrared fixed point. Rather,
there is a simpler, qualitative behavior that we are lookingfor, as we now describe.

2.2 Expectations

In a confining theory,g2(xN,r,xL)> g2(N,r,L) for x > 1. This type of relationship means that
if we hold β fixed, the measured value ofg2(N,r,L) increases asN increases, sinceL = Na will
increase proportionately.

On the other hand, if there is an infrared fixed point, the ordering of curves with increasing
N reverses once the bare couplingβ goes past the fixed point (β < β∗(N)), andg2(xN,r,xL) <

2Often below we will use the lattice couplingβ = 4/g2
0.
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g2(N,r,L) occurs forx > 1. Here we note that the fixed pointβ∗ depends onN, due to lattice
artifacts. Indeed, such a “backwards running” was seen at strong couplings in the SU(3) theory
with sixteen fundamental flavors in the work [21, 20]. We expect something like this to also occur
in the present theory at strong coupling, under the assumption that there is an infrared fixed point.

From the vantage point of the two behaviors that we have just presented, it is clear that a full
blown step scaling analysis is not needed in order to detect the presence of an infrared fixed point.
All that is needed is just to show the reversal of ordering with respect toL at smallβ . This will be
the focus of our analysis.

3. Analysis

3.1 Smearing

We follow Bilgici et al. and apply APE smearing [24, 25] for the links that are used in the
calculation of Wilson loops. We take the smearing parameterto be α = 0.5. We find that two
smearing steps works well for yielding the perturbatively required increase ing2(N,r,L) with N at
weak bare coupling. For this reason we use two smearing stepsthroughout this work.

3.2 Interpolation

In order to obtain a value ofg2 for r = 1/4 with arbitraryN, it is necessary to interpolate to
values ofR̂ that are not half-integral. For this purpose Bilgici et al. introduce a quadratic hypothesis.
However, the obtained value is somewhat different if a cubichypothesis is chosen. Furthermore,
the result depends on which points are included in the fit. We have adopted the strategy of varying
all these choices and then using the variation ofkg2 as a measure of systematic error in the method.
The mean value ofkg2 is used as our final estimate.

3.3 Results

Now that we have outlined how we obtained the values ofk(r)g2(N,r,L), we proceed to discuss
our results.3 We have measuredkg2 for latticesN = 10,12,16,20,24 with bare couplingβ = 2.25.
Note that this value ofβ is at weaker coupling than the one where a bulk phase transition occurs,
β ≈ 2, as was found in [26]. It is also at a stronger coupling than the β where there was some
evidence for fixed point behavior in the Schrödinger functional study [15]. Thus this point is
continuously connected to the continuum limit through finite mass, but is expected to be on the
strong side of the infrared fixed point. That is, we have reason to suspect backwards running for
the choiceβ = 2.25. We have performed our simulations for five values of the bare massm0a,
shown in Table 1. We have measured the PCAC massmqa from the largest lattices (N = 24), where
there is the least systematic error from finite volume. Theseare also given in Table 1. We then
extrapolatek(r)g2(N,r,L) to themq = 0 limit with quadratic and cubic fits to the data. Systematic
errors are included in the uncertainties when performing the fit. In the case of the quadratic fit,
we also consider the case where only the lightest four massesare included in the fit. The results
for the measured values ofkg2 are summarized in Table 2 and the results of the zero mass fits are

3We do not need the actual value ofk(r = 1/4) since it is a fixed constant independent ofN.
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m0a mqa

-1.000 0.448406(5)

-1.100 0.236337(4)

-1.165 0.090917(2)

-1.175 0.066873(6)

-1.180 0.054890(3)

Table 1: PCAC mass obtained from 243×48 lattices.

m0a =−1.000 m0a =−1.100 m0a =−1.165 m0a =−1.175 m0a =−1.180

103×20 0.6448(67)(0) 0.4832(18)(0) 0.38394(48)(0) 0.36808(87)(0) 0.3630(10)(0)

123×24 0.7604(6)(32) 0.5154(2)(32) 0.3884(2)(16) 0.37183(16)(66) 0.35661(19)(35)

163×32 0.9820(10)(37) 0.6114(8)(31) 0.3954(3)(18) 0.3647(2)(13) 0.35906(20)(97)

203×40 1.2621(12)(21) 0.6998(11)(28) 0.4018(3)(13) 0.3703(4)(22) 0.3474(3)(17)

243×48 1.6510(15)(7) 0.8109(15)(12) 0.4192(5)(10) 0.3870(24)(7) 0.3623(8)(18)

Table 2: Results forkg2 for the various sizes of lattices and bare masses. The first error in kg2 is statistical,
determined by jackknife analysis of fits to the Creutz ratiosas described in the text. The second error inkg2

is systematic, obtained from varying the method of interpolation used to obtain the value atR̂ = 0.25(L/a).

presented in Table 3. The results of Table 2 are displayed along with the quadratic fits to all data in
Fig. 1.

At large mass one sees the behavior characteristic of asymptotic freedom:

g2(24)> g2(20) > g2(16) > g2(12)> g2(10). (3.1)

In the case of the quadratic fit to all data, when we extrapolate to the chiral limit the trend reverses:

g2(24)≈ g2(20) < g2(16) < g2(12)≈ g2(10). (3.2)

Thus for this extrapolation we find backward running in the massless limit. However, in the other
two extrapolations of Table 3, what we see is that there is no clear pattern, but instead a rough
equality:

g2(24)∼ g2(20) ∼ g2(16) ∼ g2(12)∼ g2(10). (3.3)

Thus what one has in this case is evidence for an absence of running.
The behavior that we have observed is consistent with the existence of an infrared fixed point.

We regard our results as suggestive that Minimal Walking Technicolor does not actually walk, but
is instead inside the conformal window. This is supportive of the findings of Schrödinger functional
studies, but now by a different method.

4. Conclusions

We have found that the behavior of the couplingg2(N,r,L) is consistent with the existence of
an infrared fixed point. Two refinements to the present study could be performed, which would
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Figure 1: Values ofkg2 for β = 2.25, r = 1/4. At large mass,g2 increases with increasingN, so that the
curves are ordered top to bottom,N = 24,20,16,12,10. However, in the massless limit, the ordering of the
curves shows a trend of reversal, indicating backward running.

Quadratic, last 4 pts. Quadratic, all 5 pts. Cubic, all 5 pts.

kg2 χ2/d.o.f. kg2 χ2/d.o.f. kg2 χ2/d.o.f.

103×20 0.3312(49) 2.52 0.3288(26) 1.75 0.3321(58) 2.44

123×24 0.297(17) 23.6 0.3130(95) 25.7 0.291(20) 21.3

163×32 0.319(20) 12.7 0.295(11) 19.0 0.327(23) 11.4

203×40 0.284(15) 5.04 0.2651(85) 7.88 0.288(18) 5.36

243×48 0.313(18) 7.12 0.268(14) 29.5 0.321(22) 7.81

Table 3: Results for the zero mass extrapolation ofkg2 for the various sizes of lattices.

hopefully yield firmer conclusions. First, smaller PCAC masses should be simulated so that a
stronger case for what happens in the chiral limit can be made. Second, larger volumes such as
N = 32 should be simulated, so that the trends with respect toN can be amplified.
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