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We study the phase structure of mixed-action QCD with twos@/l sea quarks and two chiral
valence quarks, starting from the chiral lagrangi@mpriori, the effective theory allows for a rich
phase structure, including a phase with a condensate mada ahd valence quarks. Because this
would lead to mass eigenstates that are admixtures of sezabante fields, pure-sea correlation
functions would depend on valence quark masses, in contiagivith the actual setup of mixed-
action simulations. Using properties of the chiral Diraeigtor, we prove that such a phase does
not occur, and that this leads to bounds on low-energy cotssta
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1. Introduction

In lattice QCD with a mixed action (MAQCD), the discretization of the Dirac operatthe
sea sectori(e., the operator from which the fermion determinant is constructed) is chosea
different from the discretization of the Dirac operator in the valence séatq the operator which
is inverted to obtain quark propagators attached to external lines).

The continuum limit of a mixed-action theory is a partially quenched thédrpfdause even
in the continuum limit the valence and sea quark masgeandm for each flavor do not have to
be equal. This breaks unitarity already in the continuum limit, but when the laptassreya # 0, it
is not even possible to define equalitymf andms in a universal way[[2]. This implies, of course,
that unitarity is always broken at£ 0 in a mixed-action theory.

It is relatively straightforward to check the validity of the mixed-action apphoin weak-
coupling perturbation theory. More non-trivial, non-perturbative finfation about the validity is
obtained by constructing the low-energy effective field theory (EFTMAQCD, mixed-action
chiral perturbation theory (MAChPTJ][2] B| 4]. Chiral perturbationatye(ChPT) gives access to
the phase diagram of the lattice theory, and, as we will see, this allows fam-&ikial check of
the field-theoretical definition of MAQCD and the validity of MAChPT. Heree imvestigate the
phase structure of MAQCD with two chiral (Ginsparg—Wilsfin [5]) valequoarks, and two Wilson
sea quarks. For a more detailed account which includes technicalitiesfevea Ref. [B].

2. MAChPT

Field-theoretically, MAQCD with two (Wilson) sea and two (chiral) valencedtavs a theory
with six quarks: the two sea quarks, the two valence quarks, and two mbost® quarks with a
Dirac operator identical to that of the valence quarks, but with oppostistats, such as to effect a
cancellation between valence and ghost determinants, thus removing lestte/and ghost quarks
from the sea.

This implies that the non-linear field representing the pions in the EFT is a® graded

matrix .
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with @ and @ hermitian matrices of size % 4 and 2x 2, respectively, and and @ rectangular,
Grassmann-values matrices. The matgidescribes the pions in the sea and valence sectors, the
matrix ¢ those made of ghost quarks, while the Grassmann valued componentbeléstnionic
pions made out of one ghost, and one sea or valence gdaidthe pion decay constant in the
chiral limit. For an overview of the precise symmetry structure of the thedmciwieads to the
unfamiliar way in which(ﬁ appears in the non-linear fiekj see for instance Ref][7].

Since we are only interested in the phase diagram of the theory herdidesub consider the
chiral potential, which, in simplified form, and rescaled by the combination odoergy constants
(LECs)Bof?/4, is given by [P]

V=-str(M(Z+21) - %str(PSZPSZ‘l) —Cstr(RIRITHRIRT),  (2.2)
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in which P; = diag(1, 1,0, 0, 0,0) projects on the sea sector, avds the quark mass matrix

M = diag(ms, ms,m,,m,,m,,my) , (2.3)

where the first twam, entries correspond to the valence quarks, and the last two to the ghost
quarks. We consider the “large cutoff effects” regime, in which the tpwaer counting is such
thatms ~ m, ~ a2. This implies that if we consider terms in the potential to linear order in the
quark masses, we should also consider all terms of @deand the terms proportional tg and

¢, are such term§. The constant; is a LEC special to Wilson fermions and arises because of
chiral symmetry breaking. Thus, it appears only in the sea sector. TheclE special to the
mixed-action case, as can be seen from the fact that it disappear¥ firanen we replac®; by

the unit matrix. Bothc; andc, are lattice artifacts, containing a facta#. There are several more
terms in the chiral potentidl, but those do not affect the discussion of the phase diagram we are
interested in here, and we therefore omit them in this talk.

Since we will always keem, > 0 in our discussion below, all the chiral symmetries are ex-
plicitly broken (softly in the valence sector), and the full symmetry gr@up a generalization of
isospin,

G =U (2)sea x U (2/2)vatence - (2.4)

At non-zero lattice spacing there are no symmetries relating the sea andaheerghost sectors,
because of the different choices for the sea and valence Diractoref$]. Within each sector we
will always maintain isospin symmetry, taking the up and down quarks deggeniareach sector.

3. A puzzle

Let us expan® around the trivial vacuum in order to obtain the pion masses at leading orde
in ChPT (takingmsy > 0):

M2 = 2Bo(ms+4cy) , (3.1)
M2, = 2Bom, ,
M2, = Bo(mMs+m, +4c; 4 2C3)

with Mg the mass of a pion made out of two sea qualkg, the mass of a pion made out of two
valence quarks, and the mixed-pion mikg of a pion made out of a sea and a valence quark.

The third line of Eq. [3]1) suggests that spontaneous symmetry breal@m) ¢an take place
if 2c1 4+ ¢ < 0, because in that case decreasing the symm, makesMg, negative. This would
drive the theory into a “mixed phase,” with a condens@lgsq,) # 0. Indeed, if we choose
c2 > 0 (to avoid the complications of an Aoki phagé [9] in the sea sefjtor [8})2bu+ ¢ < 0,
minimization of the potentid¥ leads to the conclusion that fox+ m, 4 4c¢; + 2¢; < 0 the theory
enters a mixed phase.

The mixed condensate would break the symmetry g@ajpwn to a diagonal group in which
the remaining sea and valence quark symmetry transformations are the samandSvalence
sectors mix, and this has consequences for the spectrum of the theoiytefesting example is

1Terms linear ira can be absorbed into the quark masE}ss [8].
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the two-point function 7 (0) 15 (t) ), which is made out of sea pions only, but which in the mixed
phase becomes dependent not onlyrgnbut also orm,.?

This, however, creates a paradox: by the very construction of MAQ@GB can never hap-
pen! In an actual simulation, gauge-field configuration depend oniypor, in other words, the
dynamics of the theory can only dependroq In particular, if one considers a correlation function
that depends only on sea fields, suchms(0) s (t)), one performs a simulation in the theory with
only sea quarks; no valence quarks are present anywhere in soohpaitation?

If this were a true paradox, this would imply that the field-theoretical desanipf MAQCD
is fatally flawed, and, as a consequence, that standard EFT techomuest be used to interpret
results obtained in a mixed-action simulation. This state of affairs leads to theifodjdmportant
guestions:

1. Does MAQCD, in its field-theoretical definition, indeed have a mixed phasga phase
with (gsy5av) # O (as appears to be predicted by MAChPT)?

2. If not, does MAChPT get it wrong?

In the following section we will see that in fact this dangerous scenarioatamccur, and that
MAChHPT is forced, by the underlying theory, to get it right.

4. Resolving the puzzle

We begin with a theorem that holds in the underlying theory, MAQCD with twayseaks and
two valence quarks, invariant under the isospin grGupf Eq. 1'2_7{1)‘.‘ The theorem states that no
spontaneous isospin breaking can occur in the valence sector. Thialimast direct consequence
of the well-known Vafa—Witten[[10] theorem, that forbids breaking oftedike symmetries in the
continuum. The theorem extends to the valence sector because even itidaé¢taory the valence
quarks are chiral; the Vafa-Witten theorem applies to any type of Ginspélgpon quarks.

An immediate consequence is that a mixed phase cannot occur, becalsease would
breakU (2)sea X U (2)valence — U (2)diagonal, @nd thus a non-zero value ¢sysqy) would break
U (2)valence, in contradiction with the Vafa—Witten theorem.

This answers the first of the two questions raised in the previous sectidé®@QQ® cannot
have a mixed phase, and the paradox cannot occur. But, this still lepgegie second question:
what about MAChPT?

5. A massinequality

By choosingms > 0 andm, > 0 large, we can arrange thsiZ, M2, andMZ, are all strictly

2As can be demonstrated explicitly by a somewhat tedious but straightiboaiculation.

3The paradox persists in finite volume, beca(mg (0) 7 (t)) is invariant under integration over the orientation of
(Gsysav) in the mixed phase.

4In fact, this theorem holds for any number of valence quarks.

5t can also be shown that the theorem extends to the ghost sector, grattigular, that no Grassmann-valued
condensates can occnﬂ [6].
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positive, so that no isospin breaking takes place in the EFT. Then, freidentity

tr((Su(xy) — S y) (Su(xy) — Su(xy)) ) = 0 (5.1)

in the underlying theory, wherg; (S;) is the sea (valence) quark propagator for flaiveru, d,
andSZ;(x, y) = ¥6Su(X,y)ys for both sea and valence propagators, it follows that

(T () TG () + (TG () TR (¥)) > (TG, (X) TR (Y)) + (TG (X) TG, (Y)) - (5.2)
Translating this to ChPT, this inequality implies that
Mgy > min(Mss, Myy) - (5.3)

Let us now argue that this inequality restores the validity of MAChPT. Fron{&]), we have that

1
M2, = E(M§S+ MZ) +2(2¢; — ¢2) - (5.4)
Choosing quark masses such that = My, the inequality [[5]3) implies thlls, > Mg = My, and
thus, using Eq.[(54), that

2C1+Cr>2c1—C >0 (5.5)

(recall that we chose, > 0). But, now we can turn this around, using the fact that the L&@sd
¢, areindependent of the quark massess andm,, so that inequality[(5]5), together with the third
equation in Eq.[(3]1), implies that always, irrespective of the value of tlagkgmassedy2, > 0,
and no SSB to a mixed phase can occur, also in MAChPT. In words, theinegslity (5.8)
restricts the values of the LECs in the EFT such that the EFT is forced toullytméproduce
the phase structure of the underlying theory. While we demonstrated tiéddrethe simplified
potential of Eq.[(2]2), and for the case> 0, itis clear that, in general, the parameters of MAChPT
are restricted such that regions in the phase diagram with a mixed cotelaresaxcluded, because
of the fact that a mixed phase cannot occur in the underlying theory.

To summarize the situation, the Vafa—Witten theorem restricts the vacuumtatipevalue
of the non-linear field to the form

2 0 O
zvacuum = 0 10 ’ (5 . 6)
0O 01

whereZg is the 2x 2 unitary matrix describing the vacuum in the sea se€tds, the 2x 2 null
matrix, andl is the 2x 2 unit matrix. Substituting this form intd, the potential reduces to

V = —mtr (S +2L) — %cz (tr (Zs+32%)) . (5.7)

This is precisely the Sharpe—Singleton potential for the sea sector, wiadltis the Aoki phase
for c; < 0. No other non-trivial phase can occur.
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6. Conclusion

Referring back to the two questions raised toward the end of Sec. 3, shveato the first
qguestion is no, MAQCD cannot have a mixed phase. Because the valgarges @re not part of the
dynamics, the phase structure is restricted to that of the sea sector alane.dase, this implies
that the only possible non-trivial phase is an Aoki phase. The answiee second question is also
no. In other words, MAChPT gets it right. As we have seen, mass inegsalfitihe underlying
theory restrict the values of LECs in the EFT such as to make regions in #se plagram with
a mixed phase inaccessible. We gave an example of such a restrictionjsapdgsible that more
such constraints on the LECs exist. These would be uncovered by aodtilngyfull chiral effective
potential for arbitrarn,cuum by imposing restrictions following from the Vafa—Witten theorem in
the underlying theory.

One might ask whether a similar argument could lead to a restriction on the Yalyendich,
for negative values leads to the existence of the Aoki pHase [8]. Téwearis negative, because
the argument would have to involve the neutral pion, and thus (quarke)ttiected diagrams not
captured by the expression in Eff. {5.1). Finally, we note that our cdonkipresumably gener-
alize to other mixed-action theories, such as those with a staggered seaséchochiral valence

sector [I]L].
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