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1. Introduction and Background

With the upcoming experimental effort at the Large Hadron Collider (LHI@&)te has been a
lot of activities in the lattice community regarding the existence of non-triviahnet fixed points
(IRFP) [1]. Different methods have been used to look for or excliriePl and some results are
controversial. Calculating the discrgiefunction is one of the methods used. In the following, we
discuss finite volume effects in discrg@dunctions for spin models that can be solved by numerical
methods.

2. B functionsand Two L attice Matching

In the continuum, the Callan-Symanzfk function, fics, can be calculated using standard
perturbation theory

Bes(a) = —pua® — Boa® — Bz + -+ (2.1)

wherea = %T. The first two coefficients of Eq. 2.1 are regularization scheme indegendhey
are functions of number of coloid; and number of quark flavois; [2, 3]:

1

Pr= 5 (1INc—2Ny) (2.2)
1 NZ—1
B = 5,5 (34NS — 10NN —3 o (2.3)

The theory is asymptotically free B > 0 and a stable IRFP may emerge far> 0 andf3; < 0.
The IRFP may appear in the largeregion where perturbation theory breaks down. Therefore, it
is essential to locate IRFP nonperturbatively.

One method to calculate a discr@éunction nonperturbatively is called the two lattice match-
ing [5, 6]. It is a way of measuring the running of bare couplings basetti® fact that all the ob-
servables will have the same value if the models have the same effective &iecan block-spin
the system of volum¥, whereV is the volume in lattice units) times and calculate an observable
that will be denotedR(g,V). One can also block-spin the system of smaller voluie® n— 1
times, calculate the observali¢y’,V /bP), and tune the new couplirgj until the two observables
match. If all the observables give the same value for these two couplifigemtionsg andd/,
then the two blocked system have the same large distance physics and thehgaiva correlation
length. In the models discussed below, we only consider one parameterdaupkng space. In
general, many more couplings are generated during the block-spindmaragion. If only one rel-
evant parameter exists, all the other irrelevant couplings will eventuallgwudias one block-spins
many times near the critical point. Therefore, the examples showed belaldsipply to a larger
class of system. In Ref. [4], we used the following observable:

<(erBl @)(2)/652 @)>[3 (2.4)

R(B.7 /&) = . .
((Sxee, B(5yee, @),
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where? is the physical volume of the systemis the lattice spacing3; andB, denote neighbor
blocks, andD is the dimensionality of the system. The reason we chose this particular rational
form is that we do not need to calculate the partition function explicitly sincentela out in
both denominator and numerator. The matching condition rB§8is.®) = R(B’, (L/b)P), where
b is the scaling factor. The discrefefunction is defined adB(B,LP — (L/b)P) = 3 — B'. This
definition is consistent with the one used in [5, B]denotes either a quantity proportionalgo?
or the inverse temperature and should not be confused@yihin order to calculat&g (o), we
start out from large volumeP at By and tune the coupling at smaller volurfie/b)P to B; so that
R(Bo,LP) = R(B1, (L/b)P). We then matctR(B1,LP) = R(Bz, (L/b)P) and so on. By repeating
this procedure, we get a sequenceBd from which we can calculate the discrgBefunction
defined above. In the following, we will work with Dyson’s hierarchicgihlg model and th® = 2
nonlinearO(N) sigma model in the largd limit.

3. Dyson’sHierarchical Ising Model

The Hamiltonian of the Dyson'’s hierarchical model with=2 lattice sites is defined as
H= 2SS (3 07 @)
2n:l 4 BN xeBM
wherec controls the interaction strength for different block sizes. We can indlueleimension-
ality D through the relatior/4 = b=2-P [7], whereb = 2V/D is the scaling factor. The model has
many nice properties and is an ideal laboratory to test various ideaslmferapplies them to the
more complicated full QCD case. Here is a list of properties we used [8]9, 1

e ForD > 2 andf(n) = 1, the model has a second order phase transition, which is similar to
theD = 3 regular (nearest neighbor) Ising model.

e ForD <2 andf(n) =1, the model has no phase transition at finite temperature, which is
different from theD = 2 regular Ising model.

e ForD =2 andf(n) =log(n), the model is equivalent to Anderson model and has a Thouless
effect (discontinuity in the magnetization).

The case®= 3, 2, 1.7 withf(n) = 1 have been analyzed thoroughly in [4]. In the following, we
will consider various dimensions fdi(n) = log(n+ 1) ( models withf (n) =log(n+ 1) have same
properties ag (n) = log(n) in the infinite volume limit).

4. How does an | RFP appear/disappear ?

Fixed points correspond to zeros of {idunction. It has been pointed out that zeros of fhe
function can disappear in three ways as one or several parametagedid]. They are schemat-
ically described in Fig. 1. The first two ways are interchangeable dépgot what parameters
are usedq «+ 1/a). For the third way, the fixed points that disappeared can be recoiretkd
complex parameter plane [12]. This third way can be easily seen for thar¢héral model by
tuning the dimensionalit{p. Figure 2 shows discrei@ functions forf(n) =log(n+1), D = 1.9,
1.994, and 2. The corresponding complex RG flows are shown in Fig. 3.
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Figure 1. Three mechanisms for the loss of the fixed point(s) desciitpgil].
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Figure 2: Discretef functions forf (n) = log(n+ 1) andD=1.9, 1.994, and 2 hierarchical models (dimen-

sion increases from top to bottom).
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Figure 3: Complex RG flows and Fisher’s zeros (defined below)ffar) = log(n+ 1) andD=1.9, 1.994,
and 2 hierarchical models. The flows are constructed withwdattice matching method described in the
text.
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D=1.9, f(n)=log(n+l) D=1.994, f(n)=log(n+l) D=2, f(n)=log(n+1)
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Figure 4: Discretef functions forf(n) =log(n+ 1) andD=1.9, 1.994, and 2 hierarchical models. Pseudo
fixed points may appear for small volumes. Volume dependéncéearly shown in the figure (volume
increases from bottom to top).

5. Volume Effects

In [4], we systematically analyzed complex RG flows for fi{e) = 1 hierarchical model and
the volume dependence of Fisher's zeros (zeros of the partition furiotibe complex3 plane).
Fisher’s zeros in lattice gauge models are discussed in [13]. Here wd likauto illustrate volume
effects inAB. For this purpose, we consider tlién) = log(n+ 1) hierarchical model. Figure
4 shows how discret@ functions change with the volume. When the volume is small and the
dimension parametd is large enough, pseudo fixed points may appear (Fig. 4 middle and right).
However as the volume increases, all the zeros of dis@détections disappear. This is expected
since there is no second order phase transitiofer2 andf(n) = log(n+ 1) case. Fixed points
appearing in smaller volumes are finite volume artifacts.

6. From Discreteto Continuous Flows

Up to now, we have discussed properties of discfefieinctions. If one wants to see how
the corresponding continuous Callan-Symarnzitunctions behave, we need to do some interpo-
lations. In the following, we will construct continuoyisfunctions from discrete ones f@(N)
models. In [14], complex RG flows and discr@éunctions ofO(N) models have been constructed
from both two lattice matching and a rescaling method (where the UV cutoffaaimgein the di-
mensionless expression of the bare mass is rescaled). The relationtgtaeeg is 8 0 g2 for
both gauge models and ti&N) model. By changing the energy scafe;—~ B’ andfics — Bis,
we get ,

/ o, 99 0 g~ op’

Pes=N5 9 = Tg(AdTg) “ P

A more general discussion on how to generate continuous flow fronsstdimg function has been
provided in [15].03’ /33 can be obtained from the discrg8efunction

(6.1)

o8 . OB
w15 (6.2)
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From Egs. 6.1 and 6.2, one can easily §gf from A3 by iteration. The only thing one needs
to fix is the initial starting point for the interaction, i. Bcsy. Continuous choice can be obtained
by requiring that the asymptotic behavior agrees with expansions at sneijjercoupling. Figure
5 shows the corresponding continuggifunctions from both matching and rescaling methods dis-
cussed in [14]. Colored solid lines are obtained from matching dis@rét@ctions with different
Bcso- A pseudo fixed point appeared in the sngatkegion and is a finite volume effect. It will go
away when we further increase the volume. The black dotted line is obtaimedtlie rescaling
discrete function.
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Figure 5: Continuous3 functions constructed from both matching and rescalingrdtef3 functions.

7. Conclusion

We have successfully constructed discigtenctions forf (n) =log(n+ 1) hierarchical Ising
models for different volumes. It has been clearly demonstrated that vadffers may generate
pseudo fixed points for systems without phase transition. In order to/wehiéther the observed
fixed point(s) is intrinsic or purely finite volume artifact, one needs to do simulatior larger
volumes. An alternative way is to calculate Fisher’s zeros and apply fingessaling technique.
The technique of finding Fisher’s zeros from the constructed denstiyaté has been developed
for 3J(2) [16] and tested fod (1)[17]. The case o8U (3) with variousNs is in progress.
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