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In Euclidean four-dimensional SU(N) pure gauge theory, eigenvalue distributions of Wilson loop
parallel transport matrices around closed spacetime curves show non-analytic behavior (a ’large-
N phase transition’) at a critical size of the curve. We focus mainly on an observable composed
of traces of the Wilson loop operator in all totally antisymmetric representations, which is regu-
larized with the help of smearing. By studying sequences of square Wilson loops on a hypercubic
lattice with standard Wilson action, it is shown that this observable has a nontrivial continuum
limit as a function of the physical size of the loop. We furthermore present (preliminary) numer-
ical results confirming that, for large N, the N dependence in the critical regime is governed by

the universal exponents 1/2 and 3/4 as expected (Burgers universality).

XXIX International Symposium on Lattice Field Theory
July 10-16, 2011
Squaw Valley, Lake Tahoe, California

“Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:lohmayer@physics.rutgers.edu
mailto:neuberg@physics.rutgers.edu

Large-N phase transition of smeared Wilson loops in 4D pure YM Robert Lohmayer

1. Introduction

Already in 1981, Durhuus and Olesen [1] discovered that Wilson loops in pure SU(N) gauge
theory in two Euclidean dimensions exhibit a transition from an ’ordered phase’ to a ’disordered
phase’ at large N. In two dimensions, the eigenvalue spectrum of the untraced Wilson loop unitary
matrix depends only on the area that is enclosed by the (nonselfintersecting) space-time curve
defining the loop and a sharp infinite-N phase transition occurs at a critical value of this area. At
this point, the gap in the spectrum, that is present for small loops, closes in a non-analytic way.

In Ref. [2], Narayanan and Neuberger conjectured that a similar large-N transition also occurs
in three and four dimensions and that all transitions belong to a single universality class. If this is
indeed the case, it might be possible to connect the perturbative regime with non-perturbative mod-
els in four dimensions using the universal properties of the transition at a critical scale. However,
so far the universality conjecture has been confirmed only for the three-dimensional case [3].

In the following, we present a numerical study of the transition and its universal properties in
four dimensions using lattice methods.

2. Main observable

The Wilson loop matrix associated with a closed spacetime curve %’ is defined as usual:

W(%) = Pexp (i ji Ay (x)dx#) € SU(N) @1

with path-ordering operator &.
To study the large-N transition in the spectrum of W, we focus on

. Ny
On(r.€) = (det (¢ +e3Wi(%) ) ) = L@y, (2.2)

where all totally antisymmetric representations of W enter (f denotes the fundamental representa-
tion and x,?sym denotes the character in the k-fold totally antisymmetric representation of SU(N)).
The variable y is defined such that a zero of the determinant at y = O corresponds to an eigenvalue-
angle 6 = 7 on the complex unit circle. The gap in the eigenvalue spectrum closes at 0 = £7
(cf. Fig. 1 below). Therefore, useful information about the large-N non-analyticity can be obtained

by expanding Oy (y, %) in powers of y around y = 0 (with 8¢cp = 0, only even powers of y enter):
ON(,C) = ao(C) +a1(€)y +a(€)y* +0()°). 23)

In particular, it turns out (see below) that the scaling-invariant ratio

_ao(€)ax (%)

provides a valuable signal for the large-N phase transition in the spectrum of W.
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3. Universality class from heat-kernel model

The heat-kernel probability density (w.r.t. the Haar measure) for an SU(N) matrix W is given
by

W)= Y doy(W)e v 3.1)
all irred. r
implying
Xr(W))px = dyevE ) (3.2)

due to character orthogonality. The parameter ¢ can be interpreted as a diffusion time, d, and C,(r)
denote the dimension and the quadratic Casimir invariant of the irreducible representation r. The
above probability density can be realized in a simple multiplicative random matrix model and holds
exactly in two-dimensional pure Yang-Mills theory when ¢ is identified with the dimensionless area
variable g?N.o7 (with ’t Hooft coupling g?N and .7 denoting the area enclosed by the loop). The
heat-kernel single eigenvalue-angle distribution is given by [4]

11N > ;
piX(0,1) = TRy Y (=1)? Y d(p,q)e ¥ PP cos((p+q+1)6) (3.3)
T TN S 40

: !
with C(p,q) = 3(p+q-+1) (N = 2= +g— p) and d(p,9) = 5t Sy s

An immediate consequence of the group theoretical structure (3.1) is that

1 a 1 a y y

HK HK Yoy
1) = ——ZLiog MK (y, 1) = —— 21 <dt(2 2W)> 3.4
N(y) NayOgN(y) N8y0g et{ez t+e f HK ( )

with 7 =1(1+ 1/N) satisfies Burgers’ equation [5]
1
Iefy " + O AN = SN

with initial condition % (y,0) = —% tanh 3. At N = oo, Burgers’ equation produces a "shock-wave’

singularity at y = 0 when 7 reaches the critical value 7, =4, cf. Fig. 1.
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Figure 1: ¢/ (left) and heat-kernel single eigenvalue density piX (right) in the limit N — oo for various 7.

From Burgers’ equation (at finite N), we get

1

T HK
ay ¢N |y:0

=3 (1) — L (3.5)

o 2
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At infinite N, the inverse slope of ¢XX at y = 0 increases from —4 at T = 0to 0 at T = 4 since

1/2, 0<rt<4,
0l (1) = / -
1/6, T>4,

resulting in a discontinuous jump in ¢¥(y) for T > 4 at y = 0. This discontinuity results in a
nonzero single eigenvalue density at & = £ (on the unit circle in the complex plane). The infinite-
N phase transition (non-analytic behavior with characteristic exponents) in the eigenvalue density
of W occurs at the point where the gap in the spectrum disappears (this happens at T = 1. = 4),
cf. Fig. 1.
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Figure 2: ©}%(7) for various N.

The singularity is absent for any finite N, and very large values of N are needed to see its
formation, cf. Fig. 2. From Burgers’ equation we obtain:

PgNSZTﬂ_éVE; KzLJ%ﬁ)zLM@ (3.6)
§TiN_%ZTT4::;4 %K, (3.7)

AEEDwN“:4::%KQ, (3.8)
ngN'éﬁ?Tﬂ;:_é %K@?—u. (3.9)

Furthermore, the (purely imaginary) roots of 03X (y, T) in the critical regime (around y = 0, 7 = 4)
scale like N~ 13.

4. Numerical results in 4D

In four dimensions, the Wilson loop operator develops a perimeter divergence (and additional
corner divergences if the spacetime curve has kinks). A convenient way of regularization is by
smearing (cf. Ref. [6] for details). We deal with the intrinsic UV divergences of the action by using



Large-N phase transition of smeared Wilson loops in 4D pure YM Robert Lohmayer

L I n
" 0350 0.355 0.360 0.365 0.370

Figure 3: Lattice results for @;9(b,L) (with cubic spline interpolation between data points).
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Figure 4: wy(b,L) and 1y (b,L) for N = 19 (solid) and N = 11 (dashed) and L = 2,4,6,8.

a lattice discretization of the theory. To extrapolate to the continuum, we compute sequences of
square Wilson loops of sides 1 < L <9 for inverse 't Hooft couplings 0.348 < b = g%N <0.374 at
N = 19, using a single plaquette Wilson action on a hypercubic lattice (volumes 12% and 14* are
used to exclude data contaminated by finite-volume effects) and a combination of heat-bath and
overrelaxation updates. The amount of smearing S is chosen proportional to the size of the loop,
S = L% /55. We then measure wy(b,L) (determined from the average characteristic polynomial) as
a signal for the large-N phase transition. Large-N scaling is tested with additional runs at N = 11.
Figure 3 shows our numerical results for w9(b,L). Similar to the heat-kernel model, we
observe that very large values of N would be needed to allow for a direct observation of the singular
large-N behavior in @y. Therefore, we define an N-dependent map wy (b,L) — 1ty (b, L) through

oy(b,L) = o (ty(b,L)). (4.1

The required inversion is unique and the map can be used even though the r-dependence of (,(W))
in 4D differs from exact Casimir scaling. While the formation of the jump in wy is slow, Ty
converges rapidly to T.., cf. Fig. 4. This implies that, to some subleading order in %, oy (b,L) =
0% (1. (b,L)).

This relation can be taken over to the continuum limit, where the two variables b and L get
replaced by a single length variable [ = L/L.(b), the side of the loop in physical units. To set the
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Figure 5: Example for continuum extrapolation at N = 19 and log(+) = —0.2.
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Figure 6: Continuum functions ‘L'N(l)_1 for N = 19 (black) and N = 11 (brown). The gray bands show the
corresponding error estimates (jackknife), the horizontal dashed line corresponds to the critical value 7, = 4.

scale, we use the critical deconfinement temperature 1/L.(b), determined by

51
11 20 542 b
L(b) =026 ——— i) bi(b) = — (TrWiy) . 4.2
) =026 (o) ST (o) = (i) @2)

The continuum limit of 7y is obtained by extrapolating Ty (b, L) at fixed [ to L — oo, cf. Fig. 5.

We observe that Ty has a nontrivial continuum limit which is a smooth function of the physical
loop size [ for all N, cf. Fig. 6. This establishes the transition and its universality since we can re-
place Oy (y,%¢") by O (y,7..(1)) in the vicinity of the critical point (y = 0, T = 4) without changing
the singular large-N properties. The dependence on [ is consistent with asymptotic freedom as T
modulo a shape-dependent factor can be interpreted as an effective coupling constant.

Additional checks of universality can be obtained from the critical exponent 3/2 of the ratio
ap/a; and the N -3/ “_scaling of the level density in the critical region (cf. Fig. 7). Both checks work
very well: numerically, we obtain exponents of 1.52 and 0.73, respectively.

5. Conclusions

We have obtained numerical evidence, by extrapolating results of lattice simulations to the
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Figure 7: Left: appropriately scaled angular difference A8 between the two peaks in the single eigenvalue
density closest to 6 = & at T = 4 as a function of 1/N (blue: data points, red: heat-kernel value).
Right: N3/4A8 as a function of T (blue-green points for N = 19, red-yellow points for N = 11; black lines
show the corresponding heat-kernel functions). At the intersection point (at T =4), A < N —3/4,

continuum, that smeared Wilson loops in 4D continuum pure SU(N) gauge theory undergo a large-
N phase transition at a critical loop size. Furthermore, we have confirmed the expected universal
properties of the transition. For a complete presentation of our results (including data for larger N)
we refer to Refs. [7, 8].
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