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In Euclidean four-dimensional SU(N) pure gauge theory, eigenvalue distributions of Wilson loop
parallel transport matrices around closed spacetime curves show non-analytic behavior (a ’large-
N phase transition’) at a critical size of the curve. We focus mainly on an observable composed
of traces of the Wilson loop operator in all totally antisymmetric representations, which is regu-
larized with the help of smearing. By studying sequences of square Wilson loops on a hypercubic
lattice with standard Wilson action, it is shown that this observable has a nontrivial continuum
limit as a function of the physical size of the loop. We furthermore present (preliminary) numer-
ical results confirming that, for large N, the N dependence in the critical regime is governed by
the universal exponents 1/2 and 3/4 as expected (Burgers universality).
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1. Introduction

Already in 1981, Durhuus and Olesen [1] discovered that Wilson loops in pure SU(N) gauge
theory in two Euclidean dimensions exhibit a transition from an ’ordered phase’ to a ’disordered
phase’ at large N. In two dimensions, the eigenvalue spectrum of the untraced Wilson loop unitary
matrix depends only on the area that is enclosed by the (nonselfintersecting) space-time curve
defining the loop and a sharp infinite-N phase transition occurs at a critical value of this area. At
this point, the gap in the spectrum, that is present for small loops, closes in a non-analytic way.

In Ref. [2], Narayanan and Neuberger conjectured that a similar large-N transition also occurs
in three and four dimensions and that all transitions belong to a single universality class. If this is
indeed the case, it might be possible to connect the perturbative regime with non-perturbative mod-
els in four dimensions using the universal properties of the transition at a critical scale. However,
so far the universality conjecture has been confirmed only for the three-dimensional case [3].

In the following, we present a numerical study of the transition and its universal properties in
four dimensions using lattice methods.

2. Main observable

The Wilson loop matrix associated with a closed spacetime curve C is defined as usual:

W (C ) = P exp
(

i
∮

C
Aµ(x)dxµ

)
∈ SU(N) (2.1)

with path-ordering operator P .
To study the large-N transition in the spectrum of W , we focus on

ON(y,C ) =
〈

det
(

e
y
2 + e−

y
2 Wf (C )

)〉
=

N

∑
k=0

e(
N
2 −k)y 〈

χ
asym
k (W (C ))

〉
, (2.2)

where all totally antisymmetric representations of W enter ( f denotes the fundamental representa-
tion and χ

asym
k denotes the character in the k-fold totally antisymmetric representation of SU(N)).

The variable y is defined such that a zero of the determinant at y = 0 corresponds to an eigenvalue-
angle θ = ±π on the complex unit circle. The gap in the eigenvalue spectrum closes at θ = ±π

(cf. Fig. 1 below). Therefore, useful information about the large-N non-analyticity can be obtained
by expanding ON(y,C ) in powers of y around y = 0 (with θCP = 0, only even powers of y enter):

ON(y,C ) = a0(C )+a1(C )y2 +a2(C )y4 +O
(
y6) . (2.3)

In particular, it turns out (see below) that the scaling-invariant ratio

ω(C ) =
a0(C )a2(C )

a1(C )2 (2.4)

provides a valuable signal for the large-N phase transition in the spectrum of W .
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3. Universality class from heat-kernel model

The heat-kernel probability density (w.r.t. the Haar measure) for an SU(N) matrix W is given
by

PHK
N (W, t) = ∑

all irred. r
drχr(W )e−

t
N C2(r) , (3.1)

implying

〈χr(W )〉HK = dre−
t
N C2(r) (3.2)

due to character orthogonality. The parameter t can be interpreted as a diffusion time, dr and C2(r)
denote the dimension and the quadratic Casimir invariant of the irreducible representation r. The
above probability density can be realized in a simple multiplicative random matrix model and holds
exactly in two-dimensional pure Yang-Mills theory when t is identified with the dimensionless area
variable g2NA (with ’t Hooft coupling g2N and A denoting the area enclosed by the loop). The
heat-kernel single eigenvalue-angle distribution is given by [4]

ρ
HK
N (θ , t) =

1
2π

+
1

πN

N−1

∑
p=0

(−1)p
∞

∑
q=0

d(p,q)e−
t
N C(p,q) cos((p+q+1)θ) (3.3)

with C(p,q) = 1
2(p+q+1)

(
N− p+q+1

N +q− p
)

and d(p,q) = (N+q)!
p!q!(N−p−1)!

1
p+q+1 .

An immediate consequence of the group theoretical structure (3.1) is that

φ
HK
N (y,τ) =− 1

N
∂

∂y
logOHK

N (y,τ) =− 1
N

∂

∂y
log
〈

det
(

e
y
2 + e−

y
2 Wf

)〉
HK

(3.4)

with τ = t(1+1/N) satisfies Burgers’ equation [5]

∂τφ
HK
N +φ

HK
N ∂yφ

HK
N =

1
2N

∂
2
y φ

HK
N

with initial condition φ HK
N (y,0) =−1

2 tanh y
2 . At N = ∞, Burgers’ equation produces a ’shock-wave’

singularity at y = 0 when τ reaches the critical value τc = 4, cf. Fig. 1.
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Figure 1: φ HK
N (left) and heat-kernel single eigenvalue density ρHK

N (right) in the limit N→ ∞ for various t.

From Burgers’ equation (at finite N), we get

∂τ

1
∂yφ HK

N |y=0
= 3ω

HK
N (τ)− 1

2
. (3.5)
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At infinite N, the inverse slope of φ HK
∞ at y = 0 increases from −4 at τ = 0 to 0 at τ = 4 since

ω
HK
∞ (τ) =

{
1/2, 0≤ τ < 4,

1/6, τ > 4,

resulting in a discontinuous jump in φ HK
∞ (y) for τ > 4 at y = 0. This discontinuity results in a

nonzero single eigenvalue density at θ =±π (on the unit circle in the complex plane). The infinite-
N phase transition (non-analytic behavior with characteristic exponents) in the eigenvalue density
of W occurs at the point where the gap in the spectrum disappears (this happens at τ = τc = 4),
cf. Fig. 1.
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Figure 2: ωHK
N (τ) for various N.

The singularity is absent for any finite N, and very large values of N are needed to see its
formation, cf. Fig. 2. From Burgers’ equation we obtain:

lim
N→∞

N−
3
2

a1

a0

∣∣∣∣
τ=4

=
1
8

√
3
2

1
K

, K ≡ 1
4π

Γ
2
(

1
4

)
≈ 1.046, (3.6)

lim
N→∞

N−
3
2

a2

a1

∣∣∣∣
τ=4

=
1

24

√
3
2

K, (3.7)

lim
N→∞

ωN |τ=4 =
1
3

K2, (3.8)

lim
N→∞

N−
1
2

dωN

dτ

∣∣∣∣
τ=4

=−1
6

√
3
2

K(K2−1). (3.9)

Furthermore, the (purely imaginary) roots of OHK
N (y,τ) in the critical regime (around y = 0, τ = 4)

scale like N−
3
4 .

4. Numerical results in 4D

In four dimensions, the Wilson loop operator develops a perimeter divergence (and additional
corner divergences if the spacetime curve has kinks). A convenient way of regularization is by
smearing (cf. Ref. [6] for details). We deal with the intrinsic UV divergences of the action by using
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Figure 3: Lattice results for ω19(b,L) (with cubic spline interpolation between data points).
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Figure 4: ωN(b,L) and τN(b,L) for N = 19 (solid) and N = 11 (dashed) and L = 2,4,6,8.

a lattice discretization of the theory. To extrapolate to the continuum, we compute sequences of
square Wilson loops of sides 1≤ L≤ 9 for inverse ’t Hooft couplings 0.348≤ b = 1

g2N ≤ 0.374 at
N = 19, using a single plaquette Wilson action on a hypercubic lattice (volumes 124 and 144 are
used to exclude data contaminated by finite-volume effects) and a combination of heat-bath and
overrelaxation updates. The amount of smearing S is chosen proportional to the size of the loop,
S = L2/55. We then measure ωN(b,L) (determined from the average characteristic polynomial) as
a signal for the large-N phase transition. Large-N scaling is tested with additional runs at N = 11.

Figure 3 shows our numerical results for ω19(b,L). Similar to the heat-kernel model, we
observe that very large values of N would be needed to allow for a direct observation of the singular
large-N behavior in ωN . Therefore, we define an N-dependent map ωN(b,L)→ τN(b,L) through

ωN(b,L) = ω
HK
N (τN(b,L)) . (4.1)

The required inversion is unique and the map can be used even though the r-dependence of 〈χr(W )〉
in 4D differs from exact Casimir scaling. While the formation of the jump in ωN is slow, τN

converges rapidly to τ∞, cf. Fig. 4. This implies that, to some subleading order in 1
N , ωN(b,L) ≈

ωHK
N (τ∞(b,L)).

This relation can be taken over to the continuum limit, where the two variables b and L get
replaced by a single length variable l = L/Lc(b), the side of the loop in physical units. To set the
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Figure 5: Example for continuum extrapolation at N = 19 and log( L
Lc

) =−0.2.
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Figure 6: Continuum functions τN(l)−1 for N = 19 (black) and N = 11 (brown). The gray bands show the
corresponding error estimates (jackknife), the horizontal dashed line corresponds to the critical value τc = 4.

scale, we use the critical deconfinement temperature 1/Lc(b), determined by

Lc(b) = 0.26
(

11
48π2bi(b)

) 51
121

e
24π2

11 bi(b), bi(b) =
b
N
〈TrW1x1〉 . (4.2)

The continuum limit of τN is obtained by extrapolating τN(b,L) at fixed l to L→ ∞, cf. Fig. 5.
We observe that τN has a nontrivial continuum limit which is a smooth function of the physical

loop size l for all N, cf. Fig. 6. This establishes the transition and its universality since we can re-
place ON(y,C ) by OHK

N (y,τ∞(l)) in the vicinity of the critical point (y = 0, τ = 4) without changing
the singular large-N properties. The dependence on l is consistent with asymptotic freedom as τ

modulo a shape-dependent factor can be interpreted as an effective coupling constant.
Additional checks of universality can be obtained from the critical exponent 3/2 of the ratio

a0/a1 and the N−3/4-scaling of the level density in the critical region (cf. Fig. 7). Both checks work
very well: numerically, we obtain exponents of 1.52 and 0.73, respectively.

5. Conclusions

We have obtained numerical evidence, by extrapolating results of lattice simulations to the
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Figure 7: Left: appropriately scaled angular difference ∆θ between the two peaks in the single eigenvalue
density closest to θ = π at τ = 4 as a function of 1/N (blue: data points, red: heat-kernel value).
Right: N3/4∆θ as a function of τ (blue-green points for N = 19, red-yellow points for N = 11; black lines
show the corresponding heat-kernel functions). At the intersection point (at τ = 4), ∆θ ∝ N−3/4.

continuum, that smeared Wilson loops in 4D continuum pure SU(N) gauge theory undergo a large-
N phase transition at a critical loop size. Furthermore, we have confirmed the expected universal
properties of the transition. For a complete presentation of our results (including data for larger N)
we refer to Refs. [7, 8].
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