
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
2
5
1

Reflection Positivity of N = 1 Wess-Zumino model
on the lattice with exact U(1)R symmetry

Yoshio Kikukawa
Institute of Physics, University of Tokyo, Tokyo, 153-8902, Japan
E-mail: kikukawa@hep1.c.u-tokyo.ac.jp

Kouta Usui∗
Department of physics, University of Tokyo, 113-0033, Japan
Institute for the Physics and Mathematics of the Universe (IPMU), the University of Tokyo,
Chiba 277-8568, Japan
E-mail: kouta@hep-th.phys.s.u-tokyo.ac.jp

By using overlap Majorana fermions, the N = 1 chiral multiple can be formulated so that the
supersymmetry is manifest and the vacuum energy is cancelled in the free limit, thanks to the
bilinear nature of the free action. It is pointed out, however, that in this formulation the reflec-
tion positivity seems to be violated in the bosonic part of the action, although it is satisfied in
the fermionic part. It is found that the positivity of the spectral density of the bosonic two-point
correlation function is ensured only for the spacial momenta a|pk| . 1.84 (k = 1,2,3). It is then
argued that in formulating N = 1 Wess-Zumino model with the overlap Majorana fermion, one
may adopt a simpler nearest-neighbor bosonic action, discarding the free limit manifest super-
symmetry. The model still preserves the would-be U(1)R symmetry and satisfies the reflection
positivity.
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1. Introduction

The chiral multiplet of N = 1 supersymmetry [1] can be formulated on the lattice so that the
supersymmetry is preserved and the vacuum energy is cancelled in the free limit, thanks to the
bilinear nature of the free action. By using overlap (Majorana) fermion [2, 3, 4] for the fermionic
component, species doublers [5, 6, 7] are successfully removed and U(1)R symmetry can be main-
tained at the same time [8, 9, 10]. With this chiral multiplet, one may formulate lattice N = 1
Wess-Zumino model with exact U(1)R symmetry [11, 12, 13, 14, 15, 16]. A numerical study of this
lattice N = 1 Wess-Zumino model has recently been reported in [17].

The purpose of this short article is, however, to show that in this formulation of the chiral
multiplet, the reflection positivity [18, 19, 20, 21, 22] seems to be violated in the bosonic part of
the action, although it is satisfied in the fermionic part, as shown recently in [23]. We will also
examine the spectral density of the bosonic two-point correlation function (cf. [24]). It is found
that the positivity of the spectral density is ensured only for the momenta a|pk|. 1.84 (k = 1,2,3),
and the mode with a negative density appears at the energy as low as aE ≅ 0.69 for the momenta
appp = (π,0,0),(0,π,0),(0,0,π).

We will then argue that in formulating the lattice N = 1 Wess-Zumino model with the overlap
(Majorana) fermion, one may adopt the simpler nearest-neighbor bosonic action, discarding the
free limit manifest supersymmetry. The model so constructed still preserves the U(1)R symmetry
and satisfies the reflection positivity.

2. N = 1 chiral multiple with overlap Majorana fermion

The action of the free N = 1 chiral multiplet is given by

S0 = a4 ∑
x

{ 1
2

χTCD1χ +φ ∗D2
1φ +F∗F +

1
2

χTCD2χ +FD2φ +F∗D2φ ∗
}

. (2.1)

In this expression, we have used a decomposition of the overlap Dirac operator [2, 3], D = D1 +D2,
where

D1 =
1
2

γµ(∂ ∗
µ +∂µ)(A†A)−1/2, (2.2)

D2 =
1
a

{
1− (1+

1
2

a2∂ ∗
µ∂µ)(A†A)−1/2

}
, (2.3)

and

A = 1−aDw, Dw =
1
2

{
γµ(∂ ∗

µ +∂µ)−a∂ ∗
µ∂µ

}
. (2.4)

Note that D1 and D2 have different spin structures with respect to spinor space. In particular, we
have {γ5,D1} = 0 and [γ5,D2] = 0. In terms of this decomposition, the Ginsparg-Wilson relation
γ5D+Dγ5 = aDγ5D [8] is expressed as

2D2 = a(−D2
1 +D2

2), (2.5)

and as a consequence, we have relations

γ5(1−
1
2

aD)γ5(1−
1
2

aD) = 1− 1
2

aD2, γ5(1−
1
2

aD)γ5D = D1. (2.6)
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It is also understood that the 4× 4 identity matrix in operators D2
1 and D2 is omitted when these

operators are acting on bosonic fields.
It is straightforward to see that the above free action S0 is invariant under “lattice N = 1

supersymmetry":

δε χ = −
√

2P+(D1φ +F)ε −
√

2P−(D1φ ∗ +F∗)ε ,

δεφ =
√

2εTCP+χ, δεφ ∗ =
√

2εTCP−χ,

δεF =
√

2εTCD1P+χ , δεF∗ =
√

2εTCD1P−χ, (2.7)

where ε is a 4 component Grassmann parameter. We also note that the free action S0 possesses
three types of U(1) symmetry [10]. The first is a rather trivial one acting only on bosonic fields and
is defined by the transformation:

δα χ = 0,

δαφ = iαφ ,

δαF = −iαF, (2.8)

where α is an infinitesimal real parameter. The second one is nothing but the chiral symmetry
introduced by Lüscher,

δα χ = iαγ5(1−
1
2

aD)χ, (2.9)

Thirdly, somewhat surprisingly, the bosonic sector of S0 possesses a U(1) symmetry analogous to
eq. (2.9):

δαφ = +iα{(1− 1
2

aD2)φ − 1
2

aF∗},

δαF = +iα{(1− 1
2

aD2)F − 1
2

aD2
1φ ∗} (2.10)

due to the Ginsparg-Wilson relation. The lattice action S0 is not invariant under a uniform rotation
of the complex phase of bosonic fields, φ , F , due to the presence of terms FD2φ and F∗D2φ ∗. The
above provides a lattice counterpart of this uniform phase rotation of bosonic fields under which
the free action S0 is invariant. Using a linear combination of the above three U(1) symmetries, it is
possible to define the U(1)R symmetry [10] in the interacting system.

δα χ = +iαγ5(1−
1
2

aD)χ,

δαφ = −3iαφ + iα{(1− 1
2

aD2)φ − 1
2

aF∗},

δαF = +3iαF + iα{(1− 1
2

aD2)F − 1
2

aD2
1φ ∗}. (2.11)

3. Violation of the reflection positivity in the bosonic part

The reflection positivity is defined as the condition that any polynomial of positive time fields
F fulfills the inequality

〈θ(F )F 〉 ≥ 0, (3.1)
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where 〈·〉 means the expectation value of the theory defined through path integration as usual, and
θ is an anti linear time-reflection operator given in [20]. The θ operator acts, on scalar field φ for
instance, as

θφ(t,xxx) = φ(−t +1,xxx)∗. (3.2)

This is one of the fundamental conditions that lattice field theories have to fulfill because a lattice
theory satisfying the reflection positivity condition corresponds to an acceptable quantum theory
with unitary time evolution [18, 19, 20].

After integrating out the auxiliary field F , we have the ‘overlap boson’, which is characterized
by the Klein-Gordon type operator D†D with the overlap Dirac operator D. However, the reflection
positivity of this overlap boson system seems to be violated. It can be seen by considering the
spectral density function ρ(E, ppp) in the Euclidean version of the Källén-Lehmann representation of
the propagator. The spectral density ρ(E, ppp) is expected to be a non-negative function if the lattice
model indeed defines a quantum theory with physically acceptable evergy momentum spectrum,
and is geven in the Källén-Lehmann representation by

〈φ(x)∗φ(y)〉
∣∣∣
x0>y0

=
∫ d3 ppp

(2π)3

∫ ∞

0

dE
π

e−E(x0−y0)e−ippp(xxx−yyy)ρ(E, ppp). (3.3)

In the present case, one can explicitly estimate the spectral density ρ(E, ppp), and the result is [25]

ρ(E, ppp) = (singular part)+
(coshE −b(ppp))

√
2b(p)coshE −a(ppp)

cosh2 E −a(ppp)+b(ppp)2
θ(E −E1), (3.4)

where coshE1 = a(ppp)/2b(ppp) and

a(ppp) = 1+∑
j

sin2 p j +b(ppp)2, b(ppp) = ∑
j
(1− cos p j). (3.5)

The second term, continuous spectrum, is not positive (non-negative) because of the factor coshE−
b(ppp). The fact that the positivity of the spectral density breaks down is an indirect but strong cir-
cumstantial evidence that the overlap boson system does not fulfill the reflection positivity condi-
tion. In fact, one can prove in mathematically rigorous manner [26] that a lattice theory satisfying
the reflection positivity condition, in addition to some natural assumptions which are satisfied by
the overlap boson system, must have a non-negative spectral density.

From the explicit form of the spectral density (3.4), we can find where in the Brillouin zone
the reflection positivity is violated. Note that there is the region in the spacial Brillouin zone where
the spectral density ρ(E, ppp) can not become negative. The necessary and sufficient condition for
spacial momenta ppp to avoid negative coshE −b(ppp) is that

coshE −b(ppp) ≥ 0, ∀E ≥ E1, (3.6)

or, equivalently,

1+∑
k

sin2 pk −b(ppp)2 ≥ 0. (3.7)
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In order to give some concrete examples, we will consider the following two simple cases in
d = 4. First, we consider the case in which three components of spacial momenta are such that
p1 = p2 = p3 =: p. In this case, the condition (3.7) becomes

−1.84 . p . 1.84. (3.8)

Secondly, we consider another direction p1 = p, p2 = p3 = 0. In this case, by the condition (3.7),
p is restricted to

−2.23 . p . 2.23. (3.9)

When the spacial momenta ppp does not satisfy (3.7), the spectral density ρ(E, ppp) has to become
negative on the energy interval E1 ≤ E < Ec, where E1 and Ec are determined by

coshE1 =
a(ppp)
2b(ppp)

, coshEc = bbb(ppp), (3.10)

since ρ(E, ppp) < 0 is equivalent to a(ppp)/2b(ppp) ≤ coshE < b(ppp) when ppp breaks (3.7). We will
numerically estimate E1 and Ec, the lower and upper bound of the energy interval on which the
spectral density become negative. For instance, if d = 4, these energy values are computed as
shown in the following table:

ppp b(ppp) a(ppp) a(ppp)/2b(ppp) E1 Ec

(π,π,π) 6 37 37/12 1.79 . . . 2.48 . . .

(π,π,0) 4 17 17/8 1.39 . . . 2.06 . . .

(π,0,0) 2 5 5/4 0.69 . . . 1.32 . . .

Whether these values are large enough or not should depend on the physics one wants to see through
the overlap boson.

4. Refletion positivity of lattice Wess-Zumino model

To remedy the violation of the reflection positivity, one may adopt the simpler nearest-neighbor
action for the boson fields, φ and F as follows1:

S′0 = ∑
x

{
−1

2
χTCDχ +φ ∗(−∂ ∗

µ∂µ)φ +F∗F
}

. (4.1)

This action still possesses three types of U(1) symmetry, Eq. (2.8), (2.9) and

δαφ = +iαφ ,

δαF = +iαF, (4.2)

instead of Eq. (2.10).

1Here, we have changed the sign convention of the fermionic action by introducing new Majorana field χ ′ = iχ . Of
course this does not change any physical results. It is simply because this convention has been used in the proof of the
reflection positivity for the overlap fermions in our previous work [23].
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In this formulation of the chiral multiplet, the action of the lattice N = 1 Wess-Zumino model
may be given as follows:

S = ∑
x

{
−1

2
χTCDχ +φ ∗(−∂ ∗

µ∂µ)φ +F∗F +XTCX

−gχ̃TCφP+χ̃ −g∗χ̃TCφ ∗P−χ̃ +gFφ 2 +g∗F∗φ ∗2
}
, (4.3)

where X(x) is an auxiliary Majorana fermion field and χ̃(x) = χ(x)+ X(x). Then one may define
the U(1)R symmetry as follows:

δα χ = +iαγ5(1−
1
2

D)χ,

δαφ = −2iαφ ,

δαF = +4iαF (4.4)

The reflection positivity is now satisfied in this formulation of the Wess-Zumino model [25].

5. Discussion

Preserving R symmetry exactly is a useful way in formulating supersymmetric field theories
on the lattice. This point has been emphasized by Elliot, Giedt and Moore [27] in their formula-
tion of four-dimensional N = 4 super Yang-Mills theory. The discrete R symmetry in the two-
dimensional N = 2 Wess-Zumino model [28] has played an important role in the numerical study
of the correspondence to N = 2 conformal field theories [29].

In formulating the exact R symmetry on the lattice, however, there is a freedom in the choice of
the bosonic part of the action. When one can preserve some part of the extended supersymmetries
in the theories with N ≥ 2 [28, 30], it seems useful to adopt the bosonic actions to preserve the
supersymmetries, although one should take into care a possible effect of the violation of the reflec-
tion positivity. But, for the theories of N = 1, it seems difficult to preserve the supersymmetry in
general [31]. The free limit supersymmetry may still help in the convergence to the supersymmetric
limit in the interacting models. Otherwise, the reflection positivity condition may give a possible
guideline to choose a bosonic action.
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