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states in the infinite momentum frame is discussed. Some results for Fock wave functions, in
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the LC configuration space is found. This allowes to confirm directly the string interpretation od

two dimensional gauge theories and to determine the string tension directly from the spectrum. A
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the well known example of the massless Schwinger Model.
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Confinement in multiparton sectors of SYM2 with adjoint fermions Jacek Wosiek

In parallelling the steady and impressive progress in lattice methods, which are revealing and
confirming more and more subtle predictions of QCD as the theory of strong interactions, there is
still a considerable interest in understanding the theory by other, nonperturbative techniques. The
most prominent one is the Light Cone approach (LC) which overyears has provided a lot of insight
in the structure of QCD [1],[2]. Especially when coupled with large N and reduction techniques, it
offers an interesting path of approaching QCD problems [3].

In this talk I will review some results of a recursive scheme of understanding (and possibly
solving), LC based, "QCD equations" for the spectrum [4]. Webegin with the two dimensional
supersymmetric YM theory in the large N limit obtained by thedimensional reduction of theN =

1 SYM4. Even though in two dimensions, the model has a rich structure of multi parton Fock
sectors and has not been solved up to date.

The spectrum of the model follows from the eigen equation forthe mass operator

M2|Φ〉 ≡ 2P−P+|Φ〉 ≡ 2PHLC|Φ〉 = λ |Φ〉, |Φ〉 = ∑
p

∫

{x}
fp(x1, . . . ,xp)Tr[A†

x1 . . .A†
xp]|0〉,

which in terms of the individual Fock components has a generic form

M2Φn(x1 . . .xn) = A⊗Φn+B⊗Φn−2+C⊗Φn+2, (1)

with A,B and C being simple (rational in fact) functions of momenta fractionsxr of partons involved
in the elementary processes: elastic(2→ 2), creation(2→ 4), fusion(4→ 2), which are induced
by the LC HamiltonianHLC.

Depending on the dimension of the unreduced theory, its matter content and the color group
representation, there are many detailed versions of these equations [5]. We quote only one explicit
example (QCD2 with scalar, adjoined matter [6]).

M2φn(x1 . . .xn) =
m2

x1
φn(x1 . . .xn)+

λ
π

1
(x1 +x2)2

∫ x1+x2

0
dyφn(y,x1 +x2−y,x3 . . .xn)

+
λ
π

∫ x1+x2

0

dy
(x1−y)2 {φn(x1,x2,x3 . . .xn)−φn(y,x1 +x2−y,x3 . . .xn)}

+
λ
π

∫ x1

0
dy

∫ x1−y

0
dzφn+2(y,z,x1−y−z,x2 . . .xn)

[

1
(y+z)2 −

1
(x1−y)2

]

(2)

+
λ
π

φn−2(x1 +x2+x3,x4 . . .xn)

[

1
(x1 +x2)2 −

1
(x1−x3)2

]

± cyclic permutations o f(x1 . . .xn).

The common features of these equations are: elastic, Coulomb contributions, first time found by
’t Hooft (in the model with fundamental fermions), hierarchical structure of mixings with Fock
sectors of different multiplicity of partons, and logarithmic divergencies in theories with scalar
matter. In four dimensions above convolutions involve alsointegrals over transverse momenta.

Needless to say that full solutions of these equations are not available. Instead one uses the
numerical approach namely the Discretized Light Cone Quantization (DLCQ) [7].

In this situation we propose an approximation scheme which is based on the degree of the
infrared divergence of various terms. Namely, at zeroth order we consider only the most divergent
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(i.e. linearly) Coulomb terms and attempt to solve such a problem for all parton multiplicities.
Subsequently one might imagine including logarithmic ones(i.e. radiation ) and eventually finite
terms. Retaining only the most divergent terms in the full LCHamiltonian gives:

HLC =
λ
π ∑

A

∫ ∞

0
dkTr

[

∫ k

0

dq
q2 A†

kAk

]

−∑
A,B

g2

2π

∫ ∞

0
dp1dp2

[

∫ p1
0

dq
q2 Tr(A†

p1
B†

p2
Bp2+qAp1−q)

+
∫ p2

0
dq
q2 Tr(A†

p1
B†

p2
Bp2−qAp1+q)

]

,

whereλ ≡ g2Nc and A denotes any one of the parton species existing in the model. HereA =

a,b, f ,g, i.e., after the dimensional reduction we are left with two bosons and two fermions.
In addition to considerable reduction of various terms, theabove, most IR divergent, Hamil-

tonian does not mix different parton multiplicities, henceit can be diagonalized separately in every
Fock sector.

Second, the eigen equations (2) generate, in the Coulomb approximation, the generalizations
of ’t Hooft equation for many variables.

We have diagonalized Coulomb Hamiltonian up to four partons, using the DLCQ approach.
Matrix elements were calculated with the large N technique [1], [8]. For complete presentation and
more details the reader is referred to [4]. Our results reveal a very simple and intuitively appealing
structure.
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Figure 1: Probability distributions of the relative distance,d12 = |x−2 −x−1 |P/2π , in the two parton sector.

In Figure 1 thex− profiles of a sample of eigenstates with two partons are shown. Evidently,
solutions are well localized in the (LC) configuration spaceand the distance between two partons
increases with the eigenenergy of the state.

Similar analysis in the three parton sector results in Fig. 2, which shows the profiles in two
independent relative distances, for a series of eigenstates and at fixed value of the DLCQ resolution

3
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Figure 2: Distributions of(d13,d23) for three partons.

parameterK. Again configuration space wave functions describe three partons located at well
defined positions with the inter-parton distances increasing with the eigenenergy of a state. The
same picture emerges in the four parton sector.

This approximate localization in the configuration space can be readily understood if one re-
alizes that the Hamiltonian of massless particles does not have the kinetic energy in the infinite
momentum frame, hence we basically see the eigenstates of the potential. Since however, the
momentum fractions are bound, the localization is not exact.

The large N Coulomb Hamiltonian of n partons has theZn symmetry. This symmetry is not
manifest in Fig., since the set of the two independent relative coordinates(d13,d23) is not. Indeed
when plotted on the massless Dalitz plot, where the constraint d12+d23+d31 = 0 is automatically
satisfied, the profiles show the requiredZ3 symmetry ( c.f. Fig. 3).

Since the eigenstates found above are well localized, one can ask which is the relevant variable
controlling their eigenenergies. It turns out that it is just the length of the effective string joining
the partons:x = |d12|+ |d21| for two partons, andx = |d12|+ |d23|+ |d31|, in the three parton case.
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Figure 3: Contour plots of three parton eigenstates displayed on the massless Dalitz plot.

In Fig.4 dependence of the eigenenergies on that variable isshown for few values ofK. In both
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Figure 4: Eigenenergies vs. the combined length of strings,x, for two (left) and three (right) partons.

sectors the dependence approaches a linear form, at largeK, and the slope is consistent with the
theoretical predictionσ = λ/2 [9]. Quantitative determination of the string tension requires careful
extrapolation toK → ∞, especially for higher Fock sectors.

It is perhaps amusing that to recover the string tension, onedoes not have to measure Wilson
loops. The accurateσ value follows directly from the spectrum of bound states. This is again due
to the very good localization of massless partons on the light cone in two dimensions. Interestingly,
this property persists also in higher parton sectors. It is expected that in the full theory nonabelian
charges are screened, as in the massless Schwinger Model [10], [11]. Consequently the linear
behavior just discussed gets modified at some energy scale. Technically this change should be
driven by the creation and annihilation terms in the full Hamiltonian, which have been neglected in
the Coulomb approximation. We plan to study this problem soon.

At the moment I would like to discuss, however, the new and very sensitive tool to demonstrate
the screening in the LC formalism. The trick is also helpful in general when dealing with many
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body problems.
The multidimensional representations, like Fig., become cumbersome for higher multiplicities,

see also Fig 7 in Ref.[4] for thep = 4 case. Standard way to copy with this problem is to use
inclusive densities and correlations. In a givenp parton sector, an inclusive (actually the semi-
inclusive) single parton density is defined as

Dr(∆) =

∫

dp−1~∆p

p−1

∑
i=1

δ (∆−∆in)| fr(~∆p)|2, (3)

and gives the number of partons at a distance∆ from, e.g., the last one. It can be easily calculated
from our exclusive wave functions or, yet simpler, directlyfrom the Fourier components. The latter
representation reads, e.g. in the four parton case,

Dr(∆) =

∫ P

p2,p3,P−p2−p3>0
dp2dp3| fr(∆, p2, p3)|2 +cycl. (4)

with fr(∆, p2, p3) standing for the partial Fourier transform - only in the firstvariable.
Let us see the power of the inclusive densities in revealing the screening in the Light Cone

formulation of massless Schwinger Model. As is well known the solution of the model consists of
a set of free bosons whose LC wave functions are constructed from the single composite bosonic
creation operator. Its DLCQ version reads [12](K2 = K/2)

a†
n =

1√
n

[

∞

∑
r=0

b†
n+rbr −

∞

∑
r=1

d†
n+rdr +

n−1

∑
r=0

b†
r d†

n−r

]

, (5)

This allows to construct e.g. the four parton Fock wave function of an eigenstate with four fermions
(m - a half of a relative momentum of two bosons - labeles excitedstates).

f (m)
K (k1,k2,k3,k4) = f (m)

K (k1,k2,K2 +m−k1,K2−m−k2) =
1

√

K2
2 −m2

,

(6)

with 1≤ k1 ≤ K2 + m−1, 1≤ k2 ≤ K2−m−1. From these one readily calculates the inclusive
two-parton density introduced above. They are shown in Fig.5 for first few excited states. These
figures directly confirm the well know picture: the four fermion state is composed of two tightly
bound pairs of fermions. One of them is seen as a sharp peek while two fermions in the other one
give rise to the flat distribution due to the free relative motion of bosons. Careful reader may check
that the normalizations of both contributions are indeed correct.

Summarizing: the Coulomb approximation provides a lot of physical insight into the structure
of the bound state equations. As such it offers a good starting point for more complete solution for
the spectrum and hadron structure in general.

All results presented in this talk were obtained together with Gabriele Veneziano and Daniele
Dorigoni. I thank them for the successful and continuing collaboration. I also would like to thank
Herbert Neuberger for instructive discussions.

This work is supported in part by the International PhD Projects Programme of the Founda-
tion for Polish Science within the European Regional Development Fund of the European Union,
agreement no. MPD/2009/6.
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Figure 5: Inclusive densities, defined in the text, for the first few eigenstaes of the massless Schwinger
Model
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