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Topological excitations in the QCD vacuum take the form dfi@ent codimension one sheets
with positive and negative sheets juxtaposed in a dipolerlajhese sheets may be interpreted
as Luscher’s “Wilson bags,” which are domain walls betweisgréte quasivacua labelled by a
local value of theB parameter equal torg, with k given by the number of units of background
Ramond-Ramond flux. This picture of the vacuum is closelyagwus to Coleman’s description
of the 2D massive Schwinger model, whékés interpreted as a background electric field, and a
pointlike charged particle is a domain wall between vacughlvtiffer by one unit of background
electric flux. The main effect of the Ramond-Ramdn(l) field in low energy QCD dynamics
is the generation of phenomenologically important contiachs: (1) The dominant contact term
in the topological charge correlator which leads to positiypological susceptibility, (2) The’
mass insertion, and (3) ABJ (N¢) x SJ(Ny) invariant Nambu-Jona Lasinio 4-quark interaction.
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1. Introduction

The dynamical mechanism which spontaneously breaks dyimametry and forms the quark
condensate in QCD is still poorly understood. The NambwaJoasinio (NJL) model is a phe-
nomenologically successful model of chiral symmetry biegkbut it is not clear how the local
4-fermion interaction which drives chiral symmetry braakiin the NJL model arises from the
gauge interactions of QCD. It can be argued that the topoddgiharge excitations of the color
gauge field play a central role in forming the chiral condémsa\ccording to the Banks-Casher
relation, there will be a quark condensate w(tft) # 0 only if the densityp(A) of Dirac eigen-
modes in typical gauge fields remains constanAfer 0, i.e. there must be a large density of “near
zero” eigenmodes. For a localized instanton, the assacidt@oft zero mode can be thought of
as a quark bound to the instanton, with left-handed and-hghtled quarks attracted by instantons
and anti-instantons respectively. A gas of instantons antdirsstantons would produce a band
of near-zero eigenmodes and thereby a quark condensat8(ii}this idea is more general than
the instanton model. The near-zero Dirac eigenmodes that thee condensate should arise from
whatever gauge fluctuations contribute to the topologieatsptibility of the QCD vacuum. Monte
Carlo studies of both 4D SU(3) Yang-Mills theory [2] and 2PN~ sigma models [3, 4] have in-
dicated that the topological charge distribution in typgauge configurations is in fact dominated
by thin codimension one sheets of topological charge, woitiye and negative sheets juxtaposed
in a dipole layer. The thickness of the sheets goes to zetwindntinuum limit, while the confine-
ment scale seems to be set by the distance over which a noetiair\to the sheets decorrelates,
due to the twisting and bending of the sheets. These tomabgharge sheets provide a natural
mechanism to form the chiral condensate fromAhe 0 surface quark eigenmodes on the sheets.

In this talk, | will discuss some of the implications for cllidynamics which follow from the
interpretation of these sheets as D6 branes in holograp8io.(@6 branes are magnetic sources
of the Ramond-Ramond U(1) gauge field in lIA string theory.hblographic QCD, a D6 brane
induces an excitation of the Chern-Simons tensor of theragdoige field on the 3-dimensional
intersection of the D6 brane with the D4 color branes. Therattion between the D6 brane and
the color Chern-Simons tensor is dictated by anomaly inflayguments [5]. | will show that the
physical, low energy effect of the D6 branes and the assatiRamond-Ramond gauge interac-
tion in QCD is to produce certain phenomenologically impottcontact terms: (1) The dominant
contact term in the topological charge correlator that ¢gineed in order to haveg; > 0, and (2) A
4-quark contact term that is flavor singlet in the RR exchastggnnel (see Fig. 1). For s-channel
exchange qq annihilation) this contact term produces thémass insertion, while t-channel RR
exchange provides d(Nf) x U (N¢) symmetric NJL interaction. All these contact terms can be
said to arise from singular gauge configurations. Note thahé field theoretic limit of the holo-
graphic model, the RR field does not represent any new defifeeedom beyond the Yang-Mills
fields. Itis rather an auxiliary field that couples to the Gh&imons tensor and desribes the singu-
lar, sheet-like fluctuations of the gauge fields in the QCDuvat. It plays a role similar to that of
the auxiliary massless Goldstone field that cancels thelesas€hern-Simons pole in a covariant
treatment of the 2D Schwinger model (the “Kogut-Susskirmbli” cancellation)[6].

Long ago it was pointed out by Witten that the instanton maglgicompatible with largeN;
chiral dynamics [7], since instantons are exponentiallgpsassed at largll;, while consistency
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of the largeN, expansion requires that thg mass squared be of ordefN.. Moreover, the form

of the axial U(1) anomaly term in the chiral Lagrangian gated by instantons would bé Det

U (whereU is theU (Nf) x U(N¢) chiral field), while phenomenology indicates that it is oéth
form (log DetU)?, i.e. a puren’ mass term. The multivaluedness of the log in this expression
is an indication of the existence of discrete, quasistakigatua” in which the effective locad
parameter is shifted by integer multiples af B]. In the largeN, limit, the vacua withd = 27k for

k = 0 are long-lived and nearly degenerate withltke 0 vacuum. In Witten’s analysis, topological
fluctuations in the larg®. gauge theory vacuum appear not as localized instantonsathar as
domains ok £ 0 vacua separated by codimension one domain walls.

After the advent of holographic QCD, Witten demonstrateat these domain walls are re-
lated to wrapped D6 branes in type IIA string theory [9]. I tWitten-Sakai-Sugimoto [9, 11]
formulation of HQCD, the color gauge fields are the open gtgauge fields oiN; coincident D4
branes (5-dimensional objects) 83 x S. HereR4 = spacetime, and th§; is the compactified
5th dimension of the D4 branes. A domain wall in the 4D colanggatheory corresponds holo-
graphically to a D6 brane wrapped around feand intersecting with the color D4 branes in a
3-dimensional surface in spacetime (an “I12 brane”).

These theoretical arguments for codimension one topabgicarge excitations have been
strongly supported by lattice studies of topological cleadistributions [2, 10]. These studies
showed that the topological charge density in pure glue pg&Bge theory exhibits a laminated
structure consisting of juxtaposed, alternating sign &hektopological charge. These sheets lead
to a characteristic structure of the two-point topologidairge correlator which is dominated by a
positive contact term and a short range negative tail. Theltgical susceptibilityy; is given by
the integrated correlator. Spectral positivity argumeaetguire that the correlator baegative for
any finite separatiom # 0. This means that the correlator must have a dominant pesitintact
term atx = 0 in order to have positiv;. The short range negative tail arises because of the
juxtaposition of positive and negative sheets. (The ClI8mens excitation induced by the D6
brane is a dipole layer of topological charge.) In the Mongl& studies, the contribution tg
of the positive contact term and that of the negative tailssgarately divergent in the continuum
limit, but there is a delicate cancellation between therayiteg ax; which is positive and scales
properly in the continuum limit [12, 13]. The regular lamied arrangement of alternating sign
sheets that is reponsible for the peculiar structure of tBec@rrelator resembles a phenomenon
that arises in string theory known as a “tachyonic crysta#,[15, 16].

2. Domain wallsin QCD and Ramond-Ramond chargein string theory
As | will discuss in this talk, the domain walls suggested bigt&¥ in 4D gauge theory consists

of sheet-like excitations of the Chern-Simons tensor,

3

In a remarkable early paper, Luscher [17] emphasized theitapce in 4D Yang-Mills theory of
the integral of the Chern-Simons tensor over a 3-dimenssundaceo in 4D spacetime,

B(o) :exp(%/daﬁ,ﬂj{“”) (2.2)

1
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Luscher argued that this integral should be interpreteti@svorld volume of a (2+1)-dimensional
membrane or “Wilson bag.” This construction clarifies a viestructive analogy between topolog-
ical charge structure in 4D Yang-Mills theory and that ofigidnsional U(1) gauge theories such
as the massive Schwinger model and @R~ sigma models. The Wilson bag integral (2.2) is
the 4D Yang-Mills analog of an ordinary Wilson line in the 21 theory. In the same sense that
the Wilson line can be intepreted as the gauge phase assbeiith the world line of a pointlike
charged patrticle, the Wilson bag integral should be seerpasse attached to the world volume of
a 2-dimensional membrane.

Before the role of topology in 4D Yang-Mills theory was unsterod, the significance of the
6 parameter in gauge theories with topological charge wasdigified by Coleman in the 2D
massive Schwinger model [18]. In this mod@lcan be interpreted as a background electric field.
With this interpretation, the 2D version of domain wallsweén k-vacua is easily understood.
A pointlike charged particle in one space dimension is dsdfna domain wall between vacua
which differ by one unit of electric flux. The k-vacua are vaaontaining k units of electric flux,
and the requirement th&jumps by+2rT across the domain wall is just Gauss’s law. Note that in
2D, one-photon exchange produces a linear potential whinfirees charge. If gq pair appears in
the k=0 vacuum, it has a unit string of electric flux betweemdhbark and antiquark, i.e. a bubble
of k= +1 vacuum. The decay of la# 0 vacuum is just string breaking, i.e. screening by the
production of quark pairs. For finite quark mass the stringuiasistable, and virtual quark pairs in
the vacuum will produce regions of nonzero topological gbgr electric field in the 2D case) and
henceyx; > 0. Asm — 0, screening ok # 0 vacua is complete, and the topological susceptibility
goes to zero.

Our discussion of topological fluctuations in laye-QCD is a direct 4-dimensional general-
ization of the Schwinger model analysis. The holographi&cdption of QCD makes this analogy
complete by identifying the charged domain walls (anal@gtmuelectrically charged particles of
the Schwinger model) as wrapped D6 branes. The famous @fsBtilchinski [19] which started
the Dbrane revolution in string theory was a demonstratiat D6 branes are physical entities that
carry Ramond-Ramond charge in IlA string theory. They argses of the U(1) gauge field asso-
ciated with the massless state of a closed Ramond-Ramong. stihe Wilson bag integral (2.2)
plays a role in 4D QCD analogous to a Wilson loop in the Schetimgodel. Following this anal-
ogy, we find that thé parameter in 4D QCD can be interpreted as a background RafRanmbnd
(RR) gauge field [9] and that it plays a role similar to the lgaokind electric field in Coleman’s
anaysis of the Schwinger model.

The relation between k-vacua and the Wilson bag integra) (& .easily seen. The topological
charge is the divergence of the Chern-Simons currentQi-e.0*K,, where

1
Ky = @sﬁ,m%f”" (2.3)

(or Ky = s-€uvA” in the 2D case). If we add @ term to the action wher@ is a nonzero constant
over a closed finite regioR with boundarydR and zero outsid®, this is equivalent to adding a
Wilson bag term integrated over the boundary,

_ 4 _ UVA
S = G/Rd X Q(X) = 9/0Rdauv,\% (2.4)
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For the 2D model, the right-hand side is a Wilson loop aroulnadioundary,
S =6 ?{ dx, AH (2.5)
oR

Thus for both the 2D and 4D theories, a closed Wilson bag ¢meveith unit charge creates a
bubble of8 = +25T vacuum inside the bag.

3. Ramond-Ramond exchange and contact termsin QCD

From the fact that topological charge is the divergence @fGhern-Simons current, it is easy
to show that, in order to have nonzero topological susci#ipfiby;, the Chern-Simons current
correlator must have a massless polg%t 0,

o —0
Guu(q) = / AT (K, (x)Ky (0)) O<° e q‘c‘;jv 3.1)
In the Schwinger model, this pole arises from one-photorhamge. The gauge invariant axial
current £ is a combination of the conserved fermion current and thenGBémons currenk,.

JE=jE+KH (3.2)

In matrix elements of the gauge invariant axial current,Ghern-Simons pole (3.1) is cancelled by
an unphysical massless Goldstone pole which couples tmthsecoved currenﬁg’. (The introduc-
tion of auxiliary massless fields may be avoided by quardgizinnon-covariant Coulomb gauge,
but at the price of having a nonlocal action with a linear pttg between quarks.) Eq. (3.2) ex-
presses the fact that a gauge invariant description of thekquust include both the bare fermion
current and the comoving gauge excitation, representetidd S current. Either of these excita-
tions has a massless pole in its correlator, but the polesetéor the gauge invariant combination
(3.2).

In QCD, the CS correlator also must have a massless pole gin€ 0. As in the Schwinger
model, this pole does not appear in gauge invariant amgl#utlevertheless, it has direct physical
implications: it produces the gauge invariant contact terhe topological charge correlator,

X = [ 45(QMIQ(0) = — lim oa’ Gy () (33)

By introducing quarks as probes of the gauge field (in the giued approximation), we can identify
the RR fieldd(x) with the U(1) chiral fieldn’/ f,. Similarly, the axial vector currerjé‘ is identified
with 4,8, and hence with the RR field strengthntegrated around the compact directidn

9,0 =0, ﬁl 2y dx = ﬁl £ L0 (3.4)

There is a Kogut-Susskind dipole cancellation betweendjjt field which describes a domain
wall, and the Chern-Simons currelif, describing the comoving Yang-Mills excitation. The sum
of the two gives thet,4 component of the gauge invariant RR field strength,

f& fua=0,0+Ky (3.5)
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(b)
Figure 1. (a) The quenched double hairpin correlator which measinegjtuonicn’ mass insertion. The
indicated quark propagators are assumed to be summed bgaugk field configurations. (b) The s-channel
RR exchange picture for the hairpin correlator. RR exchaegelts in a local 4-quark contact interaction
due to its derivative coupling to the chiral field. Thepgefactors cancel the massless pole and convert it to
a delta-function.

Ky is not invariant under a color gauge transformation, butRlefield d,,6 will also transform
under color on the D4 brane surface. This transformatiorelarthe variation oK, in (3.5). This

is the same basic idea as the Schwinger model Eq. (3.2). Timection between the color gauge
field and the bulk RR field can be described in the frameworkohaaly inflow on the intersection
of the D6 and D4 branes [5].

The pole cancellation enforced by gauge invariance resjutiatd, 8 should couple to the
¢ = 0 RR pole with the same strength as the CS current. i.e. piiopaf to x;. RR exchange in
the quark-antiquark annihilation (hairpin) diagram, Figreduces to a locaj’ mass term with the
correct form of the Witten-Veneziano relation O x;/ f2,

[ dtxt'y 0’ (0 1nGys (x— )01 () Tr = 55 / dxn’( (3.6)

Thus, RR exchange in the s-channegfj @nnihilation) of quark-antiquark scattering produces a
flavor singletn’ mass insertion. This effects only the singlet meson andkbréee axialU (1)
symmetry but leaveSU (N;) x SJ (N ) chiral symmetry unbroken. We also expect a contact term
from RR exchange in the t-channel of thgamplitude. This is the same for singlet and nonsinglet
mesons. Written as a local 4-quark interaction, itis(@ls) x U (N¢) invariant Nambu-Jona Lasinio
interaction. Note that the different flavor structure of sdd-channel RR exchange simply reflects
the familiar separation between valence and hairpin quiadgdms in a lattice gauge calculation of
meson propagators. The singlet meson correlator is the $uhe walence and hairpin diagrams,
while the nonsinglet correlator is given by the valence diagalone. In the chiral limit, both
the valence and hairpin diagrams have massless poles, wkéchly cancel in the singlet channel
giving a massive]’. This cancellation is a direct manifestation of the Kogusskind dipole
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cancellation, with the valence propagator representieg3bldstone pole and the hairpin diagram
representing the Chern-Simons correlator.

To summarize, larg® [8] and holographic arguments [9], as well as Monte Carlaentce
[2, 10], indicate that the topological structure of the QCaxwum is dominated by codimension
one membranes, which play the role of domain walls separ&tivacua withk units of Ramond-
Ramond flux. This flux is described by the local valueBof 21k, given by the value of the
Wilson line of the RR field aroun&,;. These domain walls consist of singular excitations of
the Chern-Simons tensor of the color gauge field with suppor8-dimensional surfaces. The
low energy chiral effects of these domain walls can be deedrin terms of Ramond-Ramond
exchange and the associatgd= 0 pole in the Chern-Simons correlator. These effects irelud
phenomenologically important contact terms in QCD amgb In the gauge field topological
charge correlator the contact term is required for nonzeszaptibility. RR exchange in thag
scattering amplitude produces th¢ mass insertion in the s-channel, while t-channel exchange
gives aU (N¢) x U(Ns) invariant Nambu-Jona Lasinio 4-quark vertex which couldvige the

pairing mechanism for spontaneous breakin@afN;) x SUJ (N ) chiral symmetry.
This work was supported by the Department of Energy undertd@&-FG02-97ER41027.
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