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The measured partial widths of the semileptonic decays D→K`ν and D→ π`ν can be combined
with the form factors calculated on the lattice to extract the CKM matrix elements |Vcs| and |Vcd |.
The lattice calculations can be checked by comparing the form factor shapes from the lattice and
experiment. We have generated a sizable data set by using heavy clover quarks with the Fermilab
interpretation for charm and asqtad staggered light quarks on 2+1 flavor MILC ensembles with
lattice spacings of approximately 0.12, 0.09, 0.06, and 0.045 fm. Preliminary fits to staggered
chiral perturbation theory suggest that we can reduce the uncertainties in the form factors at
q2 = 0 to below 5%.
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D→ K(π)`ν form factors and |Vcs(d)| from lattice QCD Jon A. Bailey

1. Introduction

Performing a global fit under the assumption of a unitary CKM matrix [1] yields precise values
for |Vcs| and |Vcd | [2]. If new physics in flavor introduces deviations from unitarity, however, values
of the CKM matrix elements from direct determinations will in general differ from those predicted
by the global fit. Moreover, improving tests of second row and column unitarity requires improved
direct determinations of |Vcs| [2].

In the limit of massless leptons, the rates for the semileptonic decays D→ K(π)`ν become1

dΓ(D→ K(π)lν)
dq2 =

G2
F

24π3 |pK(π)|3 |Vcs(d)|2| f
D→K(π)
+ (q2)|2, (1.1)

where q2 = (pD− pK(π))
2, pK(π) is the momentum of the K(π) in the rest frame of the D, and

f D→K(π)
+ (q2) is defined in terms of the hadronic matrix element of the current Vµ = is̄γµc (id̄γµc):

〈K(π)|Vµ |D〉= f D→K(π)
+ (q2)

(
pD + pK(π)−

m2
D−m2

K(π)

q2 q

)
µ

+ f D→K(π)
0 (q2)

m2
D−m2

K(π)

q2 qµ .

(1.2)
Given the normalization of the form factors f D→K(π)

+ (q2) from lattice QCD, the CKM matrix ele-
ments |Vcs(d)| can be extracted from experimental measurements of the branching fractions.

Agreement with the Standard Model values provides important validation of our methods,
which we also use to calculate the form factors for B→ π`ν [4] and B→ K`+`− [5]. Both decays
are central in searches for new physics; the former allows direct extraction of |Vub|, while the
latter is loop-suppressed in the Standard Model. New physics seems unlikely to enter the tree-level
decays D→ K(π)`ν before the B decays. The Fermilab method applies to charm and bottom, so
consistency between our D form factors and the normalizations implied by the global fit is direct
evidence of our ability to precisely extract the B form factors.

2. Method

For the up, down, and strange quarks we use the asqtad-improved staggered action [6], for the
charm quark we use the clover action with the Fermilab interpretation [7], and for the gluons we
use a one-loop Symanzik improved gauge action [8]. We set the scale with fπ , tune the masses of
the light quarks using the experimental values of mπ and mK , and tune the hopping parameter of
the charm quark with the spin-averaged kinetic mass of the Ds.

Table 1 summarizes our data set. We vary the valence light-quark masses on each ensemble
from near the tuned strange mass ms down to ∼ 0.1ms, and the lattice spacings from ≈ 0.12 fm to
≈ 0.045 fm. To increase statistics and reduce autocorrelations, we average over four source times
and randomize the source spatial locations.

For calculations in the rest frame of the D and in heavy-meson chiral perturbation theory, the
hadronic matrix elements are conveniently parametrized by form factors f⊥ and f‖:

〈K(π)|Vµ |D〉=
√

2mD

[
vµ f D→K(π)
‖ (q2)+ p⊥µ f D→K(π)

⊥ (q2)
]
, (2.1)

1For decays to the π0, there is an additional isospin factor of 1/2 on the right-hand side of Eq. (1.1).
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≈ a (fm) L3×nt Nconf nsrc nsnk aml/ams amval κc

0.12 203×64 2052 4 4 0.02/0.05 {0.005, 0.007, 0.1259
203×64 2259 4 4 0.01/0.05 0.01, 0.02, 0.1254
203×64 2110 4 4 0.007/0.05 0.03, 0.0415, 0.1254
243×64 2099 4 4 0.005/0.05 0.05, 0.0349} 0.1254

0.09 283×96 1996 4 4 0.0124/0.031 {0.0031, 0.0047, 0.1277
283×96 1931 4 4 0.0062/0.031 0.0062, 0.1276
323×96 984 4 4 0.00465/0.031 0.0093, 0.0124, 0.1275
403×96 1015 4 4 0.0031/0.031 0.031, 0.0261} 0.1275
643×96 791 4 4 0.00155/0.031 0.1275

0.06 483×144 593 4 4 0.0072/0.018 {0.0018, 0.0025, 0.1295
483×144 673 8 4 0.0036/0.018 0.0036, 0.1296
563×144 801 4 4 0.0025/0.018 0.0054, 0.0072, 0.1296
643×144 827 4 4 0.0018/0.018 0.0160, 0.0188} 0.1296

0.045 643×192 801 4 4 0.0028/0.014 {0.0018, 0.0028, 0.1310
0.0040, 0.0056, 0.0084, 0.0160, 0.0130}

Table 1: Data on the 2+1 flavor asqtad staggered MILC ensembles for various valence masses and source
times. The columns are, respectively, the lattice spacing, lattice dimensions, number of configurations,
number of source times, number of 3-point sink times, light/strange sea-quark masses, valence light-quark
masses, and charm hopping parameter. The analysis to date includes the full QCD points; we are considering
generating data at additional source times.

where v = pD/mD, and p⊥ = pK(π)−(pK(π) ·v)v. f⊥ and f‖ can be extracted from correlator ratios.
We consider

RD→K(π)
3,µ (t,T ;q2)≡ 1

φK(π)µ

CD→K(π)
3,µ (t,T ;pK(π))√

CK(π)
2 (t;pK(π))C

D
2 (T − t)

√
2EK(π)

e−EK(π)te−mD(T−t)
, (2.2)

where φK(π)µ ≡ (1, pK(π)), EK(π) = (m2
D +m2

K(π)−q2)/(2mD), and C3, C2 are averages of corre-
lators constructed to eliminate oscillations from opposite-parity states [4]. T and t are respectively
the source-sink separation and current insertion time in the vector-current 3-points.

We use local operators for the K(π) 2-points, smear the D interpolators with a charmonium
wavefunction, and construct the currents out of light staggered and heavy clover fields [9]. For
insertion times t far from 3-point source and sink, the ratios plateau to the form factors:

RD→K(π)
3,0 ∼ f D→K(π)

‖ and RD→K(π)
3,i ∼ f D→K(π)

⊥ for 1� t� T . (2.3)

The averages C3 require raw 3-points at successive source-sink separations T and T + 1; to min-
imize our errors as a function of momentum pK(π), we generate the 3-point correlators at two
physical separations on each ensemble and for each set of valence quark masses [10].

We inject the 3-points and K(π) 2-points with momenta apK(π)/(2π/L) = (0,0,0), (1,0,0),
(1,1,0), (1,1,1), and (2,0,0) (and permutations and negatives of these components). We aver-
age the correlators over equivalent momenta (up to axis interchange) and have checked that the
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wavefunction overlap factors of the K(π) 2-points are independent of momentum. We then replace
CK(π)

2 (pK(π)) with the less noisy CK(π)
2 (0) in the ratios of Eq. (2.2) and use

R′D→K(π)
3,µ (t,T ;q2)≡ 1

φK(π)µ

CD→K(π)
3,µ (t,T ;pK(π))√
CK(π)

2 (t;0)CD
2 (T − t)

EK(π)

e−EK(π)t

√
2e−mK(π)t

e−mD(T−t)
. (2.4)

We have checked that our data obeys the continuum dispersion relation, and we substitute this
relation for EK(π) in the above ratio.

To extract the masses of the K(π) and D from the 2-point correlators, we fit to sums of ex-
ponentials with oscillating terms to account for contributions from opposite-parity states. We use
the masses to construct the ratios, and we propagate the errors via 500 bootstraps. To extract the
plateaus we fit the ratios; varying the fit function and time intervals does not significantly change
the results.

The vector currents undergo renormalization. We match to the continuum by writing the renor-
malization factors as products of the degenerate-mass vector-current normalization factors, which
we compute nonperturbatively, and correction factors whose deviations from one are perturbatively
calculable [11]:

〈K(π)|Vµ |D〉= Zcs(d)
Vµ
〈K(π)|V lat

µ |D〉, Zcs(d)
Vµ

= ρ
cs(d)
Vµ

√
Zcc

V4
Zss(dd)

V4
. (2.5)

We blind the analysis by introducing an offset in ρ .
After operator renormalization, the results for the form factors on all ensembles and for all

combinations of valence masses and momenta are simultaneously fit to staggered chiral perturba-
tion theory (SχPT) [12]. Fits to SU(3) SχPT are shown in Fig. 1. The data are for the D→ π decay
on a subset of the ensembles of Table 1: the four coarse (a≈ 0.12 fm) ensembles, four of the fine
(a ≈ 0.09 fm) ensembles (excluding the 0.05ms ensemble), and three of the superfine (a ≈ 0.06
fm) ensembles (excluding the 0.14ms ensemble). Data with momenta up through pπ = (1,1,0) are
included in the fits.2 The fit function includes leading chiral logarithms (NLO loops) and analytic
terms through NNLO.

The SU(3) SχPT fits for f D→π

⊥ and f D→K
⊥ are good, much better than SU(3) SχPT fits for

f D→π

‖ and f D→K
‖ . As exemplified in Fig. 1, fits of f D→π

‖ data to SU(3) SχPT are marginal in
quality. We understand this behavior in terms of the features of the χPT description of the energy
dependence of the form factors.

The pole from the resonance dominates the energy dependence of f⊥, but the χPT expressions
for f‖ contain no pole, and the fits suffer. The fit quality for f‖ may also reflect the limitations
of χPT. For energies comparable to the chiral symmetry breaking scale, EK(π) ∼ ΛχSB, we expect
the χPT description of the energy dependence to break down. The largest-momentum data in
fits to date have pK(π) = (1,1,0), which corresponds to Eπ ∼ ΛχSB; on the coarse ensembles,
pπ = (1,1,1) corresponds to energies Eπ & ΛχSB.

SU(3) SχPT fits for f D→K
‖ support the idea that the χPT description of the energy dependence

of f‖ is breaking down. For the same momenta, the energies EK are larger than the energies Eπ , the

2Hereafter all momenta are given in units of 2π/(aL) unless otherwise specified.
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Figure 1: Fits of D→ π data to SU(3) SχPT; the legend applies to both plots. Included are full QCD data
from 11 ensembles at three lattice spacings and four light-quark masses. The fit quality for f D→π

⊥ (left) is
good, but the fit quality for f D→π

‖ is marginal (right).

χPT expansion breaks down for smaller momenta, and fits for f D→K
‖ should be worse than fits for

f D→π

‖ . In fact, SU(3) SχPT fits for f D→K
‖ have unacceptably small p-values (p < 10−3).

To better parametrize the f‖ data, we are investigating alternative fit functions, including SU(2)
SχPT. An improved treatment of the energy dependence of f‖ would be especially desirable for
adding data at higher momenta. (Cf. Sec. 4.) At the same time, f⊥ dominates the desired form
factor f+, and SU(3) SχPT fits for f D→π

⊥ and f D→K
⊥ are good. Any model dependence in f D→π

+

introduced by the χPT description of the energy dependence of f D→π

‖ is probably small. We
therefore proceed to compare the shape of the form factor f D→π

+ obtained from the fits shown in
Fig. 1 to the shape measured by CLEO.

3. Comparison of lattice QCD and experiment

If lattice calculations are to be combined with experimental results, the lattice and experimen-
tal results must be consistent. Experiments measure shapes of form factors but cannot fix their
normalizations without the CKM matrix elements (Eq. (1.1)). For D→ K(π)`ν , experiments and
lattice calculations access the same q2 region, and comparisons of the lattice and experimental form
factor shapes provide stringent tests of lattice QCD.

In Fig. 2 we overlay our calculated f D→π
+ , normalized to the point q̃2 = 0.15 GeV2, with the

same ratio from CLEO [3]. The orange (dark grey) error band is the statistical error obtained by
including data from two coarse and three fine ensembles [13]. The yellow (light gray) error band
is the statistical error obtained by including data from the 11 ensembles of Fig. 1. The curves are
from SU(3) SχPT, and the errors are from 500 bootstraps. The errors scale as naively expected.
The form factor shapes from CLEO and the lattice calculation agree well.

4. Projected errors

To conservatively estimate our errors, we begin with the error budget of our B→ π`ν calcula-
tion [4]. At q2 = 0 naive scaling to the full QCD data set of Table 1 gives a statistical error of 4.2%
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Figure 2: Overlay of the ratio
f D→π
+ (q2)/ f D→π

+ (q̃2) from the lattice (curves and
error bands) and CLEO (blue points) [3]. The
larger lattice errors are from 5 ensembles, and
the smaller are from 11 ensembles. The form
factor shapes from CLEO and the lattice agree;
the errors scale as expected.
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Figure 3: The form factors f D→π
+ (q2) and f D→π

0 (q2)

and their statistical errors. The curves are from SχPT,
and the errors are from the Hessian. The percent er-
rors are plotted against the right-hand axis. The larger
errors at small q2 probably reflect excluded data at
corresponding momenta on the finer, more chiral en-
sembles.

and an error from the degenerate-mass vector-current normalization factors of 0.6%. Updating the
heavy-quark and ρ-factor power counting estimates to account for the ultrafine data gives errors of
2.5% and 0.5%, respectively. For the remaining errors we adopt our previous estimates [10]. This
leads to a total error of 6.1% for f D→K(π)

+ (0). However, this estimate may be overly conservative.
In Fig. 3 we plot the form factors (with the ρ-factors set to one) f D→π

+ (q2) and f D→π
0 (q2) and their

statistical errors as functions of q2. The data are from the 11 ensembles of Fig. 1.

The errors at q2
max are much smaller for f0 than for f+ because f+ ( f0) is dominated by f⊥ ( f‖),

and we have data for f⊥ ( f‖) for |pπ | ≥ 0.33 GeV↔ q2 ≤ 2.0 GeV2 (|pπ | ≥ 0↔ q2 ≤ q2
max). As q2

decreases, the errors reflect the addition of data and the hyperbolic behavior of the form factors; the
errors in f+ ( f0) grow approximately linearly in the region 1.6 GeV2 & q2 & 0.8 GeV2 (2.0 GeV2 &
q2 & 0.6 GeV2). The largest momentum of data in the fit is pπ = (1,1,0), which corresponds
to q2 ∈ [0.43,1.58] GeV2 on the ensembles with ml ≤ 0.2ms, and to q2 ∈ [0.69,1.58] GeV2 on
the superfine ensembles. Without data points below q2 = 0.43 GeV2 on the finer, more chiral
ensembles, the errors increase rapidly as q2 decreases in the region 0.3 GeV2 > q2 > 0.

Extrapolating the curve for the statistical error in f+ to q2 = 0, the error grows to about 3.6%,
somewhat smaller than that expected from naive scaling to the entire full QCD data set. Including
data at smaller q2 would allow interpolation to q2 = 0 and might improve the errors significantly.
We can appreciate the potential of the additional data by linearly extrapolating the curve for the
error in f+ for q2 ∈ [0.8,1.6] GeV2 to q2 = 0. The resulting expected error is about 2.0%. Adding
a statistical error of 3.6% (2.0%) to our systematics yields a total error of 5.7% (4.8%). Corre-
sponding error budgets are in Table 2. We conclude that including data at momenta greater than
pK(π) = (1,1,0) may improve the error in f+(0) to better than 5%. This prospect further motivates
us to consider alternatives to SU(3) SχPT for describing the energy dependence of f‖ at small q2.
(Cf. the last paragraph of Sec. 2.)
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Stat. gπ r1 m̂ ms κc pπ HQ ZV ρ FV Sys. Tot.
(a) 3.6 2.9 1.4 0.3 1.3 0.2 0.1 2.5 0.6 0.5 0.5 4.4 5.7
(b) 2.0 2.9 1.4 0.3 1.3 0.2 0.1 2.5 0.6 0.5 0.5 4.4 4.8

Table 2: Projected error budgets for the form factors at q2 = 0, assuming we (a) exclude data at momenta
greater than pK(π) = (1,1,0) and (b) include data at momenta greater than pK(π) = (1,1,0). Errors are due
to limited statistics and the truncation of SχPT; uncertainties in the D∗Dπ coupling, scale, average up-down
quark mass, strange quark mass, and charm hopping parameter; momentum-dependent discretization effects
of the light quarks and gluons; heavy-quark discretization effects; uncertainties in the matching factors ZV

and ρ; and finite volume effects. The last two entries are the total systematics and total error.
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