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1. Introduction

Some of the most stringent tests of the standard model and most promising windows into
possible new physics come from process which occur at second order in the Fermi c@astant
These include the standard model prediction for indirect CP violation irkihe K° system and
the bound on interactions which change strangeness by two units coming from thekgmatls
mass difference. Sudd(GZ) amplitudes involve the exchange of two intermediate bosons which
requires that each pair of vertices joined by suaa exchange are separated by a short distance
on the order of Imy. However, the spatial separation between these two pairs of vertices need not
be small, and “long distance” separations of the order/@#Jcp are possible.

This is wellillustrated by the familiar Wigner-Weisskopf formula describing the time evolution
of theK® — K° system:
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where the 2 2 matricesM andl” are given by:
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We are using the subscripts 0 a@do represent th&° andK® states. The generalized sum over

a and integral over the energy represents the sum over a complete set of energy eigenstates nor-
malized as(a’(E')|a(E)) = 6(E' — E)dqq. These two matrices determine the two important
quantitiesmgs — Mk, andeg:

Mk — Mk, = 2Re{M06} (1.4)
ImMMg5 — 5Iml" g5 ImAg
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The absorptive part, given by the energy conserving métixis formed from products of
first-order weak amplitudes which are now the targets of increasingly precise lattice calculations,
see for example Refs. [1] and [2]. The dispersive gdrt,is intrinsically second order iGr and
contains both a short-distance part were both exchaWgedre separated by distance scales much
smaller than 1Aqcp and the long-distance part discussed above.

The computation of the short distance contributionggoor mkg — Mk, is now a highly suc-
cessful application of lattice QCD. At the scale of QCD, phenomena taking place at a distance scale
of 1/my can be accurately represented by an effective four-Fermi operator whose coefficient can be
computed in electro-weak perturbation theory and whose matrix element between kaon states can
be computed using lattice QCD. Fex these short-distances dominate and the long-distance part is
estimated to be a few percent correction [3]. However, current results for this short contribution to
&k are now accurate on the 5% level, giving the unknown long-distance partincreasing importance.
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For theK, — Ks mass difference the size of the long-distance contribution is less certain and could
provide as much as 50% of the full result.

Itis the lattice calculation of these long distance parts which is the subject of this talk. We will
briefly review the approach presented in Ref. [4] for the calculation of the long-distance contribu-
tion to theK| — Ks mass difference and then describe its generalization to the more complex case
of &.

2. Strategy for lattice calculation K| — Ks mass difference.

As presented in Ref. [4] a Euclidean-space, finite volume calculation df;theKs mass dif-
ferenceAmy contains three important ingredients. The first is a relation between the second-order,
infinite-volume, principal part integral in Eq. 1.3 givifgnk = 2ReMg,) and a finite-volume, dis-
crete perturbation theory sum. This relation is obtained through a generalization of the first-order
formula of Lellouch and Luscher for th€ — mrrmdecay width [5]. The second ingredient is a
computational strategy for evaluating that perturbation theory sum using lattice QCD. While with
sufficient statistics the resulting lattice calculation will correctly determine the long-distance part
of Am, the short distance contribution to this result will be incorrect, reflecting the details of the
lattice regulator. Thus, the third ingredient is a method to replace this erroneous short-distance con-
tribution with the correct short distance part of the continuum theory. We will now briefly review
each of these in turn.

The relation betweer\my and a finite volume perturbation theory sum follows from the
Luscher finite-volume quantization condition [6] relating the allowed finite volume energigs,
for a two-pion system and the— 77 scatting phase shift:

@(kaL/21) + & (En) + dw(En) = nmr (2.1)

wherek, = \/E2/4—mZ and the known functiorp(y) is defined in Ref. [6]. Here we have divided
the iT— 71 scatting phase shift into the strosgvave phase shifdy and that caused by the resonant
scattering through the weakly coupl&d state. Since the location of the kaon poledg(E,) is
shifted byAmk, Eqg. 2.1 can be used to relaMnk to the finite-volume, second-order perturba-
tion theory sum which determinds,. It is this argument which we will generalize to determine
|m(M60).

Since the resulting finite volume sum that must be evaluated to deterfmmpeis closely
related to perturbation theory, the entire sum can be obtained from an integrated Green’s function
constructed from four operators: two interpolating operators which create an iKftiatate at
a timet; and destroy a finak® state ats and twoAS= 1 weak operatorsiy (t1) and Hw(t2)
evaluated at intermediate times and integrated over a fange, >ty >ty >t fork=1, 2. The
term proportional to length of the integration interv)— t, gives the desired perturbation theory
sum which determineAmy. While the evaluation of this time-integrated four-point function poses
substantial computational challenges, our first exploratory study gives encouraging results [7].

SinceAmy receives both short- and long-distance contributions, the integrated amplitude de-
scribed in the previous paragraph will receive important contributions from the region in which
the two weak vertices coincide. If a charm quark is included to exploit GIM cancelation a sub-
stantial, incorrect short-distance contribution will remain, of sizg@riga). Fortunately, the same
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techniques which allow this continuum short-distance part to be precisely defined and evaluated in
a lattice calculation can be employed here to isolate and replace this lattice artifact by the correct
continuum piece. If the four quarks making up the two kaon interpolating operators in the above
four-point function are instead treated separately and the resulting Green’s function evaluated in
Landau gauge and given large, off-shell momentum the short distance contribution can be evalu-
ated numerically in a fashion that is free of infrared singularity allowing a simple substitution by
the correct continuum short distance part. Again, first numerical experiments [7] suggest that this
can be done without difficulty.

3. Extension to &k

We now turn to the central topic of this talk, the extension of the method reviewed above
to the case of IrfMg,) andéek. Since there are no apparent added difficulties associated with the
numerical evaluation of the resulting finite-volume expression or the correction of its short-distance
part these topics will not be discussed further. However, on first-sight using a Lellouch-Luscher
style argument to obtain a finite volume formula for (W) may seem unlikely to succeed. First
&k describes the mixing of thKs andK, states and th&, state with its predominate decay into
three pions would appear inaccessible to Luscher’s formalism which applies only to two-particle
scattering. Further the energies that are the basis of the Lellouch-Luscher method are intrinsically.
CP conserving suggesting no sensitivity to the CP violating phadé.gf

Fortunately both of these problems can be avoided by adding a fictith@ss, 2 “superweak”
term to the Hamiltonian whose effects can be combined with (but will not alter at leading order)
those of the standard weak interactions:

HW = (e +ia) {S(1+y°)y*d S(1+y°)y*d} + hermitian conjugate (3.1)
The quantitiegy andcw are then chosen so that

o (K°|OLL [K®) +ReMgy = 0 (3.2)
@ (KoLK > |rj, (3.3)

forall i andj. HereO, is the operator within the curly brackets in Eq. 3.1. With the off-diagonal,
real part ofV;; canceled and the off-diagonal term proportionatdodominating the off-diagonal
parts ofljj, the eigenstates of the time development operator in Eq. 1.1 become the unfamiliar
combinationsK.. = (|K®) =i \KO>)/\/§ — both states which decay predominantly into two pions,
consistent with Luscher’s finite volume formalism. In addition, the large contributian @isures

that the tworr— 1T resonances associated with the stdesare non-overlapping and will each
contribute independent resonant behavior to that scattering. The eigenvalues ok thdirBe
development matrix on the right-hand side of Eq. 1.1 for the st#te$ can be written:

1 —0
As = 2 (Moo Mgg) F (@ (K°IOLL [R°) + ImM )
1 o
-+ Z (roo—l— rm $|r602|:|r06) (34)
— Moo T <m<K IO [K >—|—ImM06> +i5 (TooF I ) (3.5)



Long-distance contribution tek Norman Christ

We first examine the finite volume problem. Here the box &ize adjusted so that we have
three nearly degenerate states: et state|ng) with energyk,, as well as the two single-particle
states,K?) and\K0>. Using second order, degenerate perturbation theory, we can determine the
finite volume energies of interest as the eigenvalues of th& Batrix:

nlHw|K®) 2 KO|Hw ) (n]Hw [K° 0
kB SRICE K o (Ol
K™ |H Hw|K « Hw|K
n%no%—'—&n mK+n7§no<nEk:—En> (K™ [Hw|no) aE (3.6)
H
(1ol H| K (1ol H [K") Eno T ok BB

with the rows and columns corresponding [(°), \KO> and |np) in increasing order. Here the
complex quantitydm s given by:

, =0
dm= (ar +iw) (KOO [K). (3.7)
Using the CP and time-reversal operations, theBmatrix in Eq. 3.6 can be written as:

Eq1 M e 1% g7
M* Eqp e gt | (3.8)
e P/ Egp

The eigenvalues of this matrix can be determined by diagonalizing the large part of the matrix
proportional to the first-order amplitude” and then applying perturbation theory to diagonalize
the remainder to orde#?:

Re{.# (a7*)?
Eo = Edq1— —{ ‘;‘2 ) (3.9)
M (A *)?
E. = %(Edl—l—Edz):I:\/é‘,ﬂZf‘—i—Re{Tw (3.10)

We now require that the Luscher finite volume condition, Eqg. 2.1, be obeyed when the total
m— 1T phase shift, written as a combination of the usual strefigave phase shift, the resonant
scattering through th& ;) states and a standard second-order-weak Born term is evaluated at the
finite-volume energy eigenvalu&s. given in Eq. 3.10:

N = @ <g> + & (Ey) +arctan<ﬂ> +arctan<ﬂ> (3.11)

21 M_,.—Ei M_ —E;
- \<I3\HW\7T"(E)>\2_
pacre  CEe

HereM.. andl .. can be determined from the real and imaginary parts of the infinite-volume eigen-
values given in Eq. 3.5:
_0
M. = mk +Moo T (@ (K°OL[K) +ImMgg) (3.12)
L =TooFImlgp. (3.13)

If the finite volume is adjusted so that the zero-order 1T energyE,, = mk, then to zeroth
order inHy, Eqg. 3.11 reduces to the original Luscher quantization condition relating the strong
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s-wave phase shiiy(E.) and the finite-volumet— 1T energyE,,. If, for the same value dE,,,
Eqg. 3.11 is expanded to first order Hy then the Lellouch-Luscher relation between the finite
volumeK — rrrmatrix element« and theK — rrrrwidth Mgg is obtained.

Considerably more algebra is needed to obtain a relation between the finite volume.sém in
and the infinite volume amplitudelyg. As in the earlier study oAmk, we first evaluate Eq. 3.11
for a volume which makes the — T energyE,, close tomk on the scale of QCD but sufficiently
different that a perturbative expansionkfyy /(En, — Mk ) is possible. Equation. 3.11 can then be
evaluated in a power seriesliyy. The resulting formula contains a polel&t, = mk. Requiring
that this pole term vanish gives the standard Lellouch-Luscher relation. Requiring that the non-pole
piece vanishes &, = mk then relates the infinite-volume, second-order Born term in Eq. 3.11
and the finite-volume, second-order sum in the lower left corner of the matrix in Eq. 3.6.

In the next step, Eq. 3.11 is evaluated for a volume making the two-pion efgfgy mg and
the result expanded to second ordeHy, including the resonant denominators. The expression
that results contains denominators of oréig and numerators of ordéts, and can be written:

_ 9(¢+%) [(n[Hw[K%)?

aE {n;O mK - En

1 2f < (KHw|m) (n]HY[K®)
+WRG<(JZ7 ) {n;o M —E. — MOG}) }
2
giving a finite volume expression for a combination of the infinite volume amplitddigsandM .
To determinéVl; alone, a second equation is needed. As inthe simpler case examined Ref. [4],
a second relation follows is we require that the expectation value of the niMjyifor the state
IK) = («|KO) — M*\KO»/(Z\M\Z) agree with the corresponding finite volume expression up to
terms exponentially small in the size of that volume. Here the $K3tés chosen so that it does not
couple to the two-pion, on-shell state, justifying the neglect of finite volume effects. The resulting
equation can be combined with Eq. 3.14 to eliminlig giving the relation:

KOJH K’
0= Re{(ﬂ*)2<n;o< | Vﬂ:ﬂ:‘”‘ ) Mg (3.15)

1 [}dz((p+5o)%z_ 4 {a(‘p+5°)<K°\Hw\no><no\Hw\Ko>}]>}'

ER:

0(0+%) |2 JE2 0E, | 0E

OE
Since theK — mmramplitude«” is non-zero with a phase that is independent of the phase of the
amplitude in curved brackets,..), we can conclude thdt..) = 0, our desired finite-volume ex-
pression foMy;. The real part of this equation gives the earlier result fof[Rg}. The imaginary

part gives the new result for 1M} :

Im § (KO Hwn) (n|Ha|K) 2 _
iMool = Im{n;o { mk —En } * _a(%:JLE—‘SO)_ [%a (;pl;éo)<Ko‘HW‘n0><nO‘HwKo>
_agn {5(";;50)<K°\Hw\no><no\HWK°>} } (3.16)
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Thus, by exploiting the interference between the complex, CP-violating amplitddend the
second-order, Wigner-Weisskopf mass matrix, we have been able to determine the CP-violating
part of My from a finite-volume energy which is intrinsically CP-even.

Here the left hand side of Eq. 3.16 is the infinite volume quantity which determines the long-
and short-distance dispersive partsepf The right-hand side contains only finite volume matrix
elements which can be evaluated in a lattice QCD calculation. The similarity of the results for
Re{Mgs}, Im{Mgy5} andMqg (not displayed) suggests that a more direct derivation may be possible.

4. Conclusion

Given the control over the singularity associated with the principal part and related finite vol-
ume effects implied by these results and those in Ref. [4], botlKthe Ks mass differencé&my
and the complete, dispersive part&f can in principle be computed using lattice methods. In
fact, the first exploratory results of Jianglei Yu, presented in Ref. [7], suggest that such a lattice
calculation may be possible with the next generation of high performance computers.

However, many obstacles must be overcome: (a) This initial work suggests that the short-
distance parts dimx ande&g can be properly treated by a single subtraction, defined using Rome-
Southampton techniques. Such a single subtraction is adequate only if GIM cancelation has been
realized in the lattice calculation, requiring the inclusion of the charm quark which in turn requires
a small lattice spacing. (b) Many more operators and contractions must be included in a complete
calculation than have been attempted in Ref. [7]. (c) These initial calculations use a relatively
massive, 410 MeV pion. The successful subtraction of an exponentially growing single-pion con-
tribution demonstrated in Ref. [7] will become more difficult as the pion mass is reduced. Even
greater difficulty will result from the vacuum subtraction needed when disconnected graphs are
included. We believe that these difficulties can be overcome with improved numerical methods
and the sustained, 100 Tflops capability of the next generation machines now being installed. The
author acknowledges the important contributions of his RBC/UKQCD collaborators to this work.
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