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1. Introduction

The error associated with the lattice determination of the form fatfdi(0) (~ 0.5%) is
still the dominant uncertainty in the extraction [pfis| from experimental data ol semileptonic
decaysiVysl fX7(0) = 0.2163+0.23%) [1]. Improvement in the determination of that form factor
is thus crucial in order to extract all the information from the available éxpartal data.

A precise value ofV,g4| is needed to check unitarity in the first row of the CKM matrix. Any
deviation from unitarity would indicate the existence of beyond the StandadeMhysics. But,
even if unitarity is fulfilled, however, as it is the case with current expertaieand theoretical
inputs, this test can establish very stringent constraints on the scale dfdivechnew physics
(~ 10 TeV) [1]. One also could compare the valueg\gg| as extracted from helicity-allowed
semileptonic decays and helicity-suppressed leptonic decays in the gmaidehiations from SM
predictions. In particular, it is useful to study the ratio
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where the subscriptg2 andl 3 indicate that those quantities are obtained from experimental data
on leptonicK > and semileptonié s decays respectively. The ratio in (1.1) is unity in the SM but
not in some extensions of the SM, for example, those with a charged Higgsn Ahe error in the
current valueRy23 = 0.9997) [1] is limited by the precision of lattice-QCD inputs.

In these proceedings we report on the status of the calculation of thefdotan f<™(0) using
staggered quarks. The goal of this analysis is to show that the staggeradation can provide
a determination of this parameter competitive with the state of the art unquenetezthhations
[3] by addressing the main sources of systematic errors and improvingistista
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2. Methodology: extracting the form factor directly at q> =0

SemileptoniK decays are parametrized in terms of the form facterand fy in the following
way

m —m3
(mVHIK) = £57(?) p§+p‘;_%qu + X7 q, (2.1)

g — %
Q2
whereq = px — pr andV* is the appropriate flavour changing vector current. One of the main
components of our analysis which reduces both systematic and statistaral isrthe use of the

method developed by the HPQCD collaboration to study charm semileptonicsdgtjayThis
method is based on the Ward identity relating the matrix element of a vector ttorémt of
the corresponding scalar curremH(n\V),a“\K)Z = (ms— mg) (S |K), with S=§I, andZ a
lattice renormalization factor for the vector current. In this work, we usddte scalar density
of staggered fermions, so the combinatigns — my)S requires no renormalization. Using the
definition of the form factors in Eq. (2.1) and this identity, one can extf&&(q?) at anyg? by
using

) = g (TISK) @) 22)
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Figure 1: Structure of the 3-point functions needed Irpel”

to calculatefX™(q?). Light-quark propagators are o _
generated atource With random-wall sources. An Figure 2: Deviation of our data from the continuum

extended strange propagator is generatdd at dispersion relation prediction.

Kinematic constraints demand thiat(0) = fo(0), so this relation can be used to calcul&fé(0).
One of the main advantages of relation (2.2) is that it avoids the use of amraliation factor to
obtain the form factorfg. The drawback to this method is that it gives no access to the shape of
ff", but in this analysis we are focusing on the extractiofvgf, so we need the normalization of
the form factor only at a single point.

Another key ingredient is employing twisted boundary conditions [5, 6] to lsitauhe rel-
evant correlations functions directly gt = 0. This avoids an interpolation ig? and thus the
corresponding systematic uncertainty. In Fig. 1 we plot the generatsteunf the relevant 3-point
functions. In order to ge® = 0, we inject momentunp = én/L in either the kaon or the pion.
For a non-zergdx we chosefy = 6, = 0, 61 # 0, and for a non-zer@, we chosefy = 61 = 0,

6, + 0 (see Fig. 1 for definition o@oﬁlﬂz). The twisting angles are tuned to produge= 0 using
two-point correlators fits according to

2 2
91(q2=0)=|'¢(mm’27> -, éz(q2=0):"\/<”‘2<+m’27> “m2. (2.3)
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We found in a previous test run [7] that the use of random-wall sougoestly reduces the
statistical errors of the parameters of the two-point and three-pointlatsrs, so we use them
throughout this analysis.

3. Simulation details and fitting

We have completed the generation of correlators with HISQ staggerecceajearks on the
2+ 1 flavor asqtad staggered MILC ensembles [8] shown in Table 1 at two Iafimeings. We
average results over four time sources separated by 16 (24) timeslitke 62 fm (009 fm)
ensembles but displaced by a random distance from configuration t@e@ition to suppress
autocorrelations. A subset of this data was analyzed in [7]. The straalglece mass is tuned to
its physical value on each ensemble [4]. The valence light-quark massteseal according to the

relation, MoHISQ. _ mé*tasqtad
"mg

SFyS = e . The effect of the mixed actions for the sea and valence quark
(HISQ ~ mE™(asgtad
sectors can be analyzed using partially quenched staggered CHPTqtezhfor the chiral and

continuum extrapolations.
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~ a (fm) am /am, Neonf anﬁgal anT/al Nsources Nt

coarse a2 0020/0.050 2052 (04919) 0.02806 4
0.010/0.050 2243 (04959) 0.01414 4

0.005/0.050 2098 (04899) 0.00670 8

fine 009 00124/0.031 1996 (03376) 0.0080 4
0.0062/0.031 1946 (03366) 0.0160 4

g1 g1l o1 o Ul

Table 1: Ensembles and simulation detaisy, is the nominal strange-quark mass in the sea se€igifces
is the number of time sources, aNg the number of sink-source separations for which we havergtet
data.

We fit the two-point functions for a pseudoscalar meBda the expression

Nexp

Cou(Brit) = 3 (~)™(Z)? (et +e L) | (3.1)
m=0
wherelL; is the temporal size of the lattice. Oscillating terms withl)™ do not appear for pions
with zero momentum. From two-point function fits, we checked whether thincm dispersion
relation is satisfied. This is plotted in Fig. 2, which shows very small deviations the continuum
prediction K 0.15%), indicating small discretization effects.
The functional form for the three-point functions is

3pt
Ne)?p

C&fn(ﬁn, Bt T) = Z (_1)mt(_1)n(T7t)Angngl]< (efE,"[‘th,r.P(Ltft)> (efE,Q(Tft)fEQ(Tleﬂ)) ’
mn=0

(3.2)
where the factorg are the amplitudes of the two-point functions in (3.1). The three-pointpara
terA%in (3.2) is related to the desired form factigi™(?) via f§™(g?) = 3A%(q?) /2EEx (ms—
m)/(mg —m2), where we have used (2.2) and taken into account some overall fastohged in
the parametrization of the correlation function. We extract the form fad{ffég?) using the ex-
pression above directly from simultaneous fits of the relevant three- amgamt functions. In
these fits we include several three-point functions with different vadfiise source-sink separa-
tion T, with at least one odd and one eveil to be able to get a handle on the contributions from
the oscillatory states.

In this analysis it is especially relevant to check for the stability of our fitseuiite choice of
fitting parameters and techniques, since we are getting very small statigticalaard we need to be
sure that these results are not methodology dependent in any wayf tieechecks we performed
is varying the time fitting ranges and number of states included in the fits. Fittiggsdor two-
point functions areémin — (Lt — tmin) @nd for the three-point functiongin — (T — tmin), With L; the
temporal size of the lattice ant the source-sink separation—see Fig. 1. The number of states
included is the same in the regular and oscillating sectorblego= Nreguiarstates= Noscillatory states
Fixing Nexp and changindmin from 3 (5) for Q12 fm (0.09 fm) ensembles up to the maximum
allowed by the source-sink separation, give us a plateau for cenlinabwaith only small variations
in errors. Analogously, fixingmin to our preferred value we do not find any significant variation of
results foNeyp > 3 — 4.
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We study as well which combination @fs from the ones we have simulated is optimal. We
find that the central values are very insensitive to the number of thiieéfpoctions included and
the values off in the range we are analyzing. Errors and stability are better whenTLS 24 and
including three three-point functions for thel@ fm ensembles, and 8 T < 33 and including
four three-point functions for the @ fm ensembles.

Finally, we checked an alternative way of doing the fits, using the iteratiperaverage
method described in [9]. This takes an explicit combination of three-poitions with consec-
utive values ofT and the time slicé which suppresses the contribution from both the first regular
excited state and the first oscillatory state. Again, results are compatible withistatisticalo
with our preferred fitting method.
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Figure 3: In the left panel, we collect the form factd"(0) obtained from the different ensembles in
Table [1]. The right panel shows an example of the output fiteerchiral and continuum extrapolation tests.
The dotted black line in both plots is the NLO CHPT predictidrhe solid black line is the extrapolation
in the light-quark mass with a physicak and in the continuum limit. The green and red lines are also
extrapolations in the light-quark masses with™®but with a ~ 0.12 fm,0.09 fm, respectively.

4. Results forf, (g7 = 0)

In Fig. 3 we collect the results fof*”(0) with statistical errors from our preferred fits as a
function of (rymy)?, fixing (2m2 —m?2) to the experimental value. We plot results coming from
three-point functions where the external momentum to obddis O is injected via theK and
the 1T (we give an offset in the pion mass to the two points for clarity). The gréangie at the
far left corresponds to the.T? fm ensemble with masses 0.005/0.050, four time sources, and a
moving pion. When analyzing those data we found it to be more challengind staide results,
so we have decided to double the number of sources and exclude it irsoussions until the full
new data set is analyzed and other effects, like finite volume correctionfmaorporated to the
analysis. So, in particular, we do not include it in the fits described below.

The first remarkable characteristic of our results is that the statisticakeare very small,
0.1—0.15%, reaching our goal to be competitive with other determinations. In additiemesults
coming from three-point functions where the external momentum tq?get0 is injected via th&
and therragree within the very small statistical errors, as can be seen in the figusscdnstitutes
a very good test of our methodology and quoted errors.
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4.1 Chiral and continuum extrapolation

The form factorf (0) can be written as a CHPT expansion in the following wdy(0) =
1+ fo+ fa+ fe+... =1+ fo+ Af. The Ademollo-Gatto (AG) theorem, which follows from vector
current conservation, ensures tiat0) — 1 in the SU(3) limit and, furthermore, that th8U(3)
breaking effects are second order(im — m?). This fixesf, completely in terms of experimental
guantities. At finite lattice spacing, systematic errors can enter due to,dar@g, corrections to
the dispersion relation needed to derive Eqg. (2.2). Those and otheetiiation effects are very
small though, as can be deduced from our results in Fig. 3. Howevee statistical errors are
at the 01 — 0.2% level, we should pin down the other sources of systematic errors @sqlyeas
possible.

Our plan for treating the light-quark mass dependence and the discretigfitots in our cal-
culation is to use two-loop continuum CHPT [10], supplemented by staggantidlly quenched
CHPT at one-loop. The small variation wighin our data suggests that addressing those effects at
one loop should be enough for our target precision.

Since we do not yet have the staggered CHPT expressions, nor kawgiemented the two-
loop continuum CHPT functions, just as an exercise, we can try to fit atarwith a much more
simple fitting ansatz. We take the continuum partially quenched NLO CHPT &sipre[11] and
add a general parametrization of NNLO analytic terms ancorrections of the form

2
a
f70) =1+ o Ca 2 ) + (- 20 rme + O (ramo)?

2
a
+ Cé3>(r1mn)zlog(nﬁ/u2)+Cé4)(r1mn)4+Cé5) <r1> ].(4.1)

We include only correlation functions coming from injecting the momentum imtfe these test
fits. The result for one of these fits wit, = cY —ofori= 3,4 is shown in Fig. 3. We can obtain
similar good fits with different combinations of terms in (4.1). This must be takstrgjsia naive
first try to fit our data and no conclusions should be drawn until we hagd staggered CHPT to
gain more information about the structure of our data.

5. Conclusions and outlook

We have completed the generation of the data in Table 1 needed for the taicafa K (0).
Since the time of the conference we have generated data for anothse evesemble with light-
guark masam = 0.007 to facilitate the chiral extrapolation, which we anticipate is going to be
our main source of uncertainty.

The statistical errors in the form factor in all ensembles exceed our @&tjpers, being around
0.1—-0.15%. We have performed several checks of the robustness of thmld#nvalues and
errors, by studying the stability with changes in the time range and numbetes, stee dependence
on the source-sink separation and number of three-point functionglettlim the fit, and testing
alternative methods for fitting the correlation functions. We find it very diffito make changes
in the fitting procedure that change the fit results outside the one sigma rangtaer very good
test of our results is the fact thak™(0) as extracted from three-point correlation functions with
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a movingr and a movingk agree with each other. For the final analysis we will redo the fits we
found to be the optimal, including the correlation functions with both momentum idjéctde
and theK to further increase the statistics.

We found very small lattice spacing dependence in our data and the cantidispersion
relation is fulfilled at the A5% level, but in view of the small statistical error, we plan to study in
detail the dependence @A by using staggered partially quenched CHPT at one-loop. We will also
investigate the use of two-loop continuum CHPT.

With all these elements, we expect our calculation to be competitive with thentstede of
the art.
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