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1. Introduction

Semileptonic decays @-mesons contain rich physics. Lattice calculations of tmenffactors
for these decays are important for the search for hints ofpteysics through the determination of
CKM matrix elements. These form factors have been wellistudn the lattice. Previously, some
of us tested a stochastic method to measure 3-point fursctieaded to calculate the semileptonic
decay form factor [1]. The advantage of stochastic methotigit we have access to a greater range
of momenta at fixed cost. This enables us to extract the foctorfanore reliably from results for
the three point functions at different momentum transfers.

In particular, theDg meson is interesting for flavor physics. Its major semideft decay is to
n andn’, which has a contribution from a disconnected loop diagraig. (1). The loop runs over
three light flavors so the effect is enhanced by a factor {taed thus may be large. The purpose
of this work is to test the feasibility of measuring the disgected diagram, and to quantify its
contribution to the form factor.

We extract the scalar form factdg from the relation [2]:

folef) = oz (71505 (1.)
S r’

whereS= Ic is a scalar current made from charm and light quanksare the masses of the quarks
and mesons. The matrix element can be extracted from tteioly ratio of 3-point over 2-point
functions:

Ca(ts —ti,t —t;; p,d)

= = Z,Zo,RK,0, B,t—ti,t; —t;), (1.2
Cg(t—ti;k)CzDs(tf—t;rS) 1Zo,R(k.d, p it —t), (1.2)

(n(k.1)1S(@,1)[Ds(Btr)) = Zy Zo,

and similarly forn’. For largets —t; andt —t; this ratio should approach a constafi}.andZp, are
the overlap factors between the meson state and the intirmpbperator, which can be extracted
from the two point functionﬁ:g (t —ti;R) andC?S(tf —t;P), respectively. The two point functions
for n andn’ also have a disconnected part, howevemat~ 445 MeV we expect its contribution
to the mass to be small and we neglect it in this first exployagtudy.

We use QCDSF Z4x 48n; = 2+ 1 configurations [3]. So far we only use the @Jsymmet-
ric set (; = Ks = 0.1209) with lattice spacing ~ 0.08 fm. This was generated using the tree-level
Symanzik-improved gluonic action and non-perturbativietyproved Wilson fermions with stout
links in the derivative terms (SLINC action). We use the samiativistic quark action for the
(quenched) charm quark witkenarm= 0.11. Note that since we use the flavor @Ysymmetric
configurations, the disconnected contributions in Bhe— n 3-point function cancel, when we
identify n = ng. The Chroma software package [4] is used for some of the sisaly
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Figure 1. Connected (left) and disconnected (right) diagrams whaftribute toCs(ts,t; p,§). We use a
stochastic method to estimate the all-to-all propagattasoted by blue lines.
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2. Noise Reduction techniques

In order to calculate the disconnected loop, all-to-allpagators are required. These are
estimated using stochastic methods, which involve peiifugN inversions of the light quark Dirac
operator for each configuratiomy should be large enough to give sufficiently small stochastic
errors relative to the gauge noise. For some quantitiesttfobastic noise dominates the overall
uncertainty and it is important to use efficient noise reiductechniques.

We measure the disconnected “loop”

Gtp =5 €t [pEX)M X X, eX' %),
XX X
where M is the Dirac operator for a light quark argis a smearing function. The stochastic
estimation of the all-to-all propagat—1(X,t;X",t) involves the following approximation:

Ml:%i!sﬂthﬁ(%), (2.1)

where|n;) is a random noise vector ang) = M~1|n;). We use%(Zer iZ7) complex random
numbers for the noise vector. For edackie need to smear both;) and|s) (|ni) must be smeared
after solving for |s)) so we need ® applications of the smearing operator. This significantly
increases the computer time needed to calculate the disctthloop. Time dilution (partitioning)
[5] is implemented: the noise vector is only non-zero on anivo time slices.

We test the following three noise reduction techniques.

Spin dilution/partitioning This uses projected noise vectors on a single spinor conmp@mel
sums over the projections afterwards [5]:

P4

2l

4
> 3 187, (2.2)

wheremi(a>> = P@|n;) is the projected noise vector. It required #versions but for some
guantities the stochastic error is reduced by a factor greatn 2. In addition, we can
reduce the cost of smearing because the spin projeBt®rrommutes with the smearing of
our choice. A naive scaling give®\&mearing operations, but we only neéd &pplications:
4N for |s®) andN for |n;).

Hopping Parameter Acceleration (HPA) [6] This is based on the following identity
(kD)™ t=M"1—kD— (kD)?>—-..— (kD)™ 1, (2.3)

wherekD is the hopping part of the Dirac operator. Note that the @déirie operator satisfies
trysk D] = O due to the spinor structure so that this term only conteibiid the noise. This
means thatkD)?M ! represents an improved estimateMdf® (we call itn = 2 HPA). As
long as the smearing is diagonal in spinor space, this istalgofor the smeared all-to-all
propagator.
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Truncated Solver Method (TSM) For some guantities the ultra violet modes dominate. Ingthes
cases, using a small number of CG iterations in the solvahéosolution vecto|s) provides
a good approximation, for example, to the disconnected [@pf]. To arrive at an unbiased
estimate, a correction term needs to be added to the truhpate

1 L S e S s 01
M= — Strunci) (il + o~ Soias j) (M} (2.4)
Ny i; N2j:gl+1

The first term uses the truncated solutigfunci), which is cheap to calculate and typically
causes the main part of the stochastic error. The secondctEmtains|Spias j) = |Sconv j) —
|Srunc j)» Where|scony j) is @ converged solutionscony j) is expensive, and only accounts for a
small part of the stochastic error|gas j) does not contribute significantly to the observable.
Therefore, by tuning parameters a- number of CG-iterations for the truncated padi;
number of stochastic noises for the truncated p&t,number of stochastic noises for the
bias part — we can reduce the total calculation cost. We us@ adDver for the truncated
solutions and a BiCGstab solver for the converged solutions

3. Comparisons

We investigate the noise reduction techniques using onégtmation. We use Wuppertal
smearing [9] for the quarks, with parameters which are tupadinimize the contributions from
the excited states to the effective mass.

In Figs. 2 and 3 we plot the stochastic errors for various doatlons of the noise reduction
techniques. In each case, the computational cost is fixeel hdhizontal axes correspondnpthe
number of iterations of the solver in the TSM. The data at —100 indicate the results without
the TSM. In particular, the red plus symbols (“+") show theults without any noise reduction
techniques. For a fixed, we have optimizedN; andN, to give the smallest stochastic error under
the cost condition

N1(NTcG + Tsmeay + N2(NTce + NeonvIBicGstabt Tsmea) = constant (3.1)
assuming the square of erraz, ., to scale according to

fi f
Odioch = N, + Ny (3.2)

wheref; and f, are the variances of the first and second terms in eq. (28fectively.neqny is the
number of iterations needed to obtain the converged solutigs, Teiccstaband Tsmearfepresent
the computer time needed for 1 CG iteration, 1 BiCGstabtitaraand smearing, respectively. The
optimal ratios ofN; /N, are around 1 (10), with (without) smearing.

Although small differences between the results are noifsignt due to the uncertainty on the
stochastic errors, in all cases spin dilution together WA (purple squares), gives the minimum
error when combined with TSM. Therefore we use this comimnah the following analysis.

The gain factor,
~ o%(without noise reduction

o2(with noise reduction ’

(3.3)

4
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Figure 2: Estimated stochastic errors at fixed costffee (0,0,0). The horizontal axes arefor the TSM.
Data ath = —100 are without TSM. Left panel: without smearing. Right @lamvith smearing.
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Figure 3: The same as Fig. 2 but f@= (1,0,0).

strongly depends on the smearing. Without smearing (lefélsd, we obtain maximum gain factors
of 16 — 25, which translates into a reduction of the compoiteti cost of the same magnitude. With
smearing, it is only about a factor 2. This is because theribonion to the error from the bias part
(i.e., fy) is larger than or of the same magnitude as the truncated faart

4. Results

Having optimized the noise reduction, we can now measureigmnnected contribution to
the form factor. For the TSM, we truncate after= 20 CG iterations and the numbers of noise
vectors ardN; = 10 andN, = 20. A total of 939 configurations were used in the analysis.

Following our previous study [1], we use stochastic techegfor the connected contribution
as well. The noise vectors are placed at the sink obxheaeson (denoted by a red circle in Fig. 1).
For each configuration, 244 spin diluted noise vectors were computed for the charmkquar
terms of momenta, 57 different combinationsfofor the Ds meson were calculated. Note that a
similar calculation with the sequential method would reg7x 12 inversions.

In order to extract the matrix elements in eq. (1.2), we fixedtime separation between the
source and th®g sink separately for the connectad £ 24,t; = 0) and the disconnectets & 24,

t; = 16) matrix elements. We combine the two contributions aféeds. For the connected part,
taking the maximum separatidn —t; = T /2 = 24 enables us to average over the forward and
backward propagations. For the disconnected part, in dodaverage the forward and backward
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Figure 4: Ratios of 3-point over 2-point function® in eq. 1.2, for connected and disconnected parts.
k=d= (0,0,0) for the left panel and-k = d = (1,0,0) for the right panel.

propagations, the noise vector has a non-zero value at tmesglices separated by 16 time-slices
(ts =8). The usage of differerttt —t; for the connected and disconnected 3-point functions is
allowed because we have assumgd= m,’ (remember thatn, = my = m).

Fig. 4 shows the ratio of the correlation functions, whichresponds tdfo(q?)/Z,Zp,. The
disconnected part is multiplied by 3 because of the 3 lighbfla The errors for the disconnected
contribution are small enough to obtain signals, signitigedifferent from zero.

In Fig. 5 we show the form factors for the octeg) and singlet 1) ns:

Ing) = i(!U_U> +|dd) —2/5%) connected only, (4.1)
V6
In1) = %(!u_w +|dd) + |58) connected- 3x disconnected. (4.2)

Preliminary fits tofo(g?) of the form fo(g?) = % give fo(0) = 0.75(3) and fo(0) = 0.52(5), for
Ds — ng andDs — n1, respectively. Also included in Fig. 5 is a value from liglaine QCD sum
rules for the decay intq [10], fo(0) = 0.45(14). Due to SU3) flavor symmetry th®s — ng form
factor also represents the form factorldf— lvirandD — IvK. Note thatfy(0) for n; is smaller
than that forng. This is consistent with the form factors f8r— n,n’ [11], which is the heavy
quark limit, can be compared to our calculation.

5. Conclusions

We tested three methods (and their combinations) of nothgctimn techniques for measuring
the disconnected contributions to the meson semi-leptonic decay form factor. The combination
of spin dilution, hopping parameter acceleration and tated solver method was found to give the
biggest gain in computer time. These noise reduction teclesi allowed us to measure non-zero
contributions to the form factor, on §8) flavor symmetric QCDSH¢ = 2+ 1 configurations.
Further studies with non-S3) symmetricns = 2+ 1 configurations are planned.
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Figure5: Form factorfo(qz) for Ds — lvng andDs — lvn;. Errors are statistical only. A value from QCD
light cone sum rules (LCSR) [10] is also plotted. To enharisibility, the fitted values at? = 0 and the
LCSR results are slightly shifted to the right and left, exstjvely.
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