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We report on our calculation of the kaon semileptonic form factors in N f =2+1 lattice QCD. Chi-
ral symmetry is exactly preserved by using the overlap quark action for a straightforward com-
parison with chiral perturbation theory (ChPT). We simulate three pion masses down to 290 MeV
at a single lattice spacing of 0.11 fm and at a strange quark mass very close to its physical value.
The form factors near zero momentum transfer are precisely calculated by using the all-to-all
propagator and twisted boundary conditions. We compare the normalizations and slopes of the
form factors with ChPT and experiments.
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1. Numerical simulations

The matrix element of the K→πlν decays is parametrized by two form factors

〈π(p′)|Vµ |K(p)〉 = (p+ p′)µ f+(q2)+(p− p′)µ f−(q2) (q2 = (p− p′)2). (1.1)

The normalization of the vector form factor f+(0) is an important quantity for a precise deter-
mination of a CKM matrix element |Vus| and the search for new physics. For a reliable lattice
calculation of f+(0), we also examine the consistency of other information in the matrix element,
namely f−(0) and the form factors’ shape, with chiral perturbation theory (ChPT) and experiments.

In this article, we report on our calculation of f{+,−}(q2) in N f =2+1 QCD. Chiral symmetry
is exactly preserved by using the overlap quark action for a straightforward comparison with ChPT.
At a single lattice spacing a=0.112(1) fm, we simulate three values of degenerate up and down
quark masses mud = 0.015, 0.035 and 0.050 that cover a range of the pion mass 290 – 540 MeV.
The strange quark mass is fixed to a single value ms = 0.080, which is very close to its physical
value ms,phys =0.081. We choose a lattice size, (L/a)3×(T/a) = 163×48 or 243×48, depending
on mud in order to satisfy a condition MπL&4 to control finite volume effects. The statistics are
2,500 HMC trajectories at each combination of mud and ms.

We calculate two- and three-point functions

CP(∆t,p) =
a4

L3T ∑
x,t

∑
x′
〈OP(x′, t +∆t)O†

P(x, t)〉, (1.2)

CPQ
µ (∆t,∆t ′;p,p′) =

a4

L3T ∑
x,t

∑
x′′,x′

〈OQ(x′′, t +∆t +∆t ′)Vµ(x′, t +∆t)O†
P(x, t)〉 (1.3)

using an exponential smearing function φ(r) = e−0.4|r| for the interpolating operator O†
P(x, t) =

∑r φ(r)q̄(x + r, t)γ5q′(x, t) (P = π or K). We refer readers to Refs. [1, 2] for details on how to
construct these correlators using the all-to-all propagator [3].

In order to explore the most important kinematical region q2∼0, the meson momentum p(′) is
induced by employing the twisted boundary conditions (TBCs) [4]

q(x+Lk̂, t) = eiθ q(x, t), q̄(x+Lk̂, t) = e−iθ q̄(x, t) (k = 1,2,3), (1.4)

where k̂ is a unit vector in the k direction. We use a common twist angle θ in all the spatial
directions for simplicity. Here we consider the K+→π0lν channel, and impose the TBCs for the
up and strange quarks. The periodic boundary condition is used for the spectator down quark. Our
simulation parameters are summarized in Table 1.

Table 1: Simulation parameters. We denote the bare quark masses in lattice units by m{ud,s}.

mud ms lattice MπL θ
0.050 0.080 163 ×48 4.9 0.00, 0.40, 0.96, 1.60
0.035 0.080 163 ×48 4.1 0.00, 0.60, 1.28, 1.76
0.015 0.080 243 ×48 4.2 0.00, 1.68, 2.64
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Figure 1: Left panel: effective value f0(q2
max;∆t,∆t ′)=2

√
MKMπ R(∆t,∆t ′)/(MK +Mπ) obtained with dif-

ferent values of ∆t + ∆t ′. Data are shifted in the horizontal direction so that the meson source and sink
operators are located at T/4− (∆t + ∆t ′)/2 and T/4 +(∆t + ∆t ′)/2, respectively. Right two panels: three-
point function CKπ

4 for each jackknife sample. We plot data normalized by the Monte Carlo average for µ =4
and 1 in each panel. Open and filled symbols are data with and without averaging over the location of the
meson source, respectively.

2. Form factors at simulation points

We calculate the scalar form factor f0(q2)= f+(q2)+ f−(q2)q2/(M2
K −M2

π) at q2
max =(MK −

Mπ)2 from the following double ratio [5]

R(∆t,∆t ′) =
CKπ

4 (∆t,∆t ′;0,0)CπK
4 (∆t,∆t ′;0,0)

CKK
4 (∆t,∆t ′;0,0)Cππ

4 (∆t,∆t ′;0,0)
−−−−−→
∆t,∆t ′→∞

(MK +Mπ)2

4MKMπ
f0(q2

max)
2. (2.1)

The form factors f{+,0}(q2) at q < q2
max are calculated from [5, 6]

R̃ =
CKπ

4 (∆t,∆t ′;p,p′)CK(∆t,0)Cπ(∆t ′,0)
CKπ

4 (∆t,∆t ′;0,0)CK(∆t,p)Cπ(∆t ′,p′)
→
{

EK +E ′
π

MK +Mπ
+

EK −E ′
π

MK +Mπ
ξ (q2)

}
f+(q2)

f0(q2
max)

, (2.2)

Rk =
CKπ

k (∆t,∆t ′;p,p′)CKK
4 (∆t,∆t ′;p,p′)

CKπ
4 (∆t,∆t ′;p,p′)CKK

k (∆t,∆t ′;p,p′)
→ 2pk

(p+ p′)k

EK +E ′
K

(EK −E ′
π)ξ (q2)−EK −E ′

π
, (2.3)

where E(′)
P (P = π or K) represents the energy of the meson P with the momentum p(′). Note that

we can convert f+(q2) to f0(q2) (and vice versa) using the the ratio ξ (q2) = f−(q2)/ f+(q2), except
at q2

max where R̃ and Rk have no sensitivity to ξ (q2).
The use of the all-to-all propagator greatly helps us identify the plateaux of these ratios. In

contrast to previous studies with ∆t +∆t ′ kept fixed, we can take arbitrary combinations of ∆t and
∆t ′. As shown in Fig. 1, the effective values of f0(q2

max) with different values of ∆t + ∆t ′ exhibit
good consistency, which gives us confidence about our determination with sub-percent accuracy.

Another important advantage with the all-to-all propagator is that we can remarkably improve
the statistical accuracy of meson correlators (and hence their ratios) by averaging over the location
of the meson source (x, t) in Eqs. (1.2) and (1.3). As shown in the right two panels of Fig. 1, the
statistical fluctuation of CKπ

µ (µ =4,1) is reduced by about a factor of 3. This averaging enables us
to achieve . 1 % accuracy for f{+,0}(q2), and 10 – 30 % for ξ (q2).
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Figure 2: Scalar form factor f0(q2) as a function of q2. Left and right panels show data at our heaviest and
lightest pion masses, respectively. We also plot interpolations to q2 =0 with various parametrization forms
together with f0(0) obtained using the pole ansatz (diamond).

3. q2 dependence

We plot our results for f0(q2) as a function of q2 in Fig. 2. In this study, we simulate small
values of |q2| by using TBCs to precisely determine f+(0)(= f0(0)). The data show small curvature
in our region of q2 and are well described by any of the following parametrization forms

f0(q2) = f0(0)(1+ c0q2), f0(q2) = f0(0)(1+ c0q2 + c1q4), f0(q2) =
f0(0)

1−q2/M2
pole

, (3.1)

which have also been used in the analyses of experimental data. In this preliminary report, we
determine the normalization f0(0) and its slope f ′0(0) using the pole form. The uncertainty due
to this parametrization is estimated by the largest deviation among the results of the above three
interpolations. We note that this uncertainty is similar to or smaller than the statistical error.

The situation is similar for f+(q2), which is plotted in the left panel of Fig. 3. We observe that
f+(0) is in good agreement with f0(0) as expected, while the latter has slightly smaller uncertainty
due to a better control of its interpolation to q2 =0 with the accurate data of f0(q2

max). We therefore
use f0(0) as the normalization of the vector form factor in the following analysis.
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Figure 3: Interpolation of f+(q2) (left panel) and ξ (q2) (right panel) as a function of q2.
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Figure 4: Chiral extrapolations of f+(0). The left and right panels show extrapolations based on the chiral
expansion in terms of M2

{π,K}/F2
0 and M2

{π,K}/F2
π , respectively. In the right panel, we also plot f+(0) from

recent calculations in N f =2+1 [8] and N f =2 [9] QCD.

We plot ξ (q2) as a function of q2 in the right panel of Fig. 3. Our data show a very mild
dependence on q2 with our statistical accuracy of . 30 %. Note also that the leading order (LO)
analytic terms in the chiral expansion of ξ (q2) are independent of q2, since ξ (q2) vanishes as
∝ms −mud in the SU(3) symmetric limit [7]. We interpolate ξ (q2) to q2 =0 using a linear fit.

4. Chiral extrapolation

Figure 4 shows our chiral extrapolations of f+(0) based on SU(3) ChPT. In this preliminary
report, we employ the fitting form

f+(0) = 1+ f2 +∆ f , f2 =
3
2

(HKπ +HKη) , (4.1)

HPQ = −
M2

P +M2
Q

128π2F2
0

(
1+

2M2
PM2

Q

M4
P −M4

Q
ln

[
M2

Q

M2
P

])
, ∆ f =

(
M2

K −M2
π

F2
0

)2{
c0 + c1

M2
K +M2

π
F2

0

}
, (4.2)

where f2 represents the next-to-leading order (NLO) contribution [7], and the LO relation M2
η =

(4M2
K −M2

π)/3 is used to evaluate HKη . We also include the higher order analytic correction ∆ f
with c{0,1} treated as fit parameters. The Ademollo-Gatto theorem [10] guarantees that f2 consists
only of the chiral logarithms with the single low-energy constant (LEC) F0, that is the decay con-
stant in the chiral limit of three flavors. Note that Eqs. (4.1) and (4.2) can be considered as an
expansion in terms of M2

{π,K}/F2
0 .

We obtain the extrapolation in the left panel of Fig. 4 by using F0 =52.5(5.1)stat determined
from our study of the meson decay constants [11]. The convergence of the chiral expansion at
the physical quark mass is f+(0)= 1− 0.073[ f2] + 0.025(6) [∆ f ] in contrast to the conventional
wisdom that f2 is only few percent correction and ∆ f is even smaller. This is because our estimate
of F0 is significantly smaller than the phenomenological value F0=87.7 MeV[12] and enhances the
chiral corrections ∝M2n

{π,K}/F2n
0 . Note, however, that the phenomenological estimate involves large

Nc assumptions, which are not consistent with recent experimental data of the Kl4 decays [13].
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Figure 5: Chiral extrapolation of 〈r2〉Kπ
V (left panel) and ξ (0) (right panel).

The convergence can be improved by switching the expansion parameter to M2
{π,K}/F2

π as we
already demonstrated in our study of Mπ and Fπ in N f =2 QCD [14].1 The right panel of Fig. 4
shows the extrapolation using Eqs. (4.1) – (4.2) rewritten in terms of M2

{π,K}/F2
π . We obtain a more

convergent expansion f+(0) = 0.964(6) = 1− 0.023− 0.013(6) without a subtle cancellation
between f2 and ∆ f . Note also that recent calculations in N f =2 + 1 [8] and N f =2 [9] QCD are
consistent with this extrapolation.

Our chiral extrapolation of the normalized slope 〈r2〉Kπ
V =6 f ′+(0)/ f+(0) is shown in the left

panel of Fig. 5. We employ the NLO expression [7]

〈r2〉Kπ
V =

12Lr
9

F2
π

− 3
64π2F2

π

{
h
(

M2
π

M2
K

)
+h

(
M2

η

M2
K

)
+

2
3

ln
[

M2
π

µ2

]
+

5
3

ln
[

M2
K

µ2

]
+ ln

[
M2

η

µ2

]}
, (4.3)

h(x) =
x3 −3x2 −3x+1

2(x−1)3 ln [x]+
1
2

(
x+1
x−1

)2

− 1
3
, µ = Mρ , (4.4)

plus a higher order analytic correction. Note that 〈r2〉Kπ
V has the NLO analytic term with a LEC

Lr
9 in contrast to f+(0). As shown in Fig. 5, our data are well described by this form and the

extrapolated value is in good agreement with the experiment [16]. Our estimate Lr
9 ×103 =4.1(3)

is slightly smaller than a phenomenological estimate 5.9(4) [17], though the error of our preliminary
result is statistical only.

The right panel of Fig. 5 shows our results for ξ (0) as a function of the SU(3) breaking
parameter M2

K −M2
π . In this preliminary analysis, we parametrize the quark mass dependence of

ξ (0) by a simple linear form

ξ (0) = d0 +d1(M2
K −M2

π), (4.5)

which is motivated from the ChPT expression of the leading analytic terms ∝ M2
K −M2

π [7]. Our
data are well fitted to this form as shown in Fig. 5. We obtain d0 =−0.006(8) confirming that ξ (0)
vanishes in the SU(3) symmetric limit, as expected. The extrapolation to the physical point yields
ξ (0)=−0.094(8) which is consistent with the experimental value −0.125(23) [18].

1See also Ref. [15] for a resummation of effects of sea strange quarks, which could be a source of the large deviation
between Fπ and F0.
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5. Summary

In this article, we report on our calculation of the kaon semileptonic form factors. Their
normalizations and slopes at q2 =0 are precisely calculated by using the all-to-all propagator and
TBCs. We observe a good consistency of 〈r2〉Kπ

V and ξ (0) with experimental results.
The choice of the expansion parameter is an important issue on the convergence of the chiral

expansion of f+(0). We note that the small value of F0 also enhances the chiral correction to other
observables, such as the pion and kaon charge radii [2]. The large deviation Fπ−F0 can mainly
come from effects of sea strange quarks, which are difficult to estimate solely from experimental
data. A more precise determination of F0 is an important task of lattice QCD to assess the reliability
of the chiral expansion based on SU(3) ChPT.

Our calculations at different values of mud and ms are underway to study systematics of the
chiral extrapolations. It is also interesting to apply two-loop ChPT formulae to our data. Although
the formulae are complicated, exact chiral symmetry forbids additional terms due to finite lattice
spacings and provides us a theoretically clean comparison at the higher order.

Numerical simulations are performed on Hitachi SR11000 and IBM System Blue Gene Solu-
tion at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale
Simulation Program (No. 09/10-09). This work is supported in part by the Grants-in-Aid for Scien-
tific Research (No. 21674002, 21684013, 23105710), the Grant-in-Aid for Scientific Research on
Innovative Areas (No. 2004: 20105001, 20105002, 20105003, 20105005), and the HPCI Strategic
Program of the Ministry of Education, Culture, Sports, Science and Technology.
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[5] D. Bećirević et al., Nucl. Phys. B 705, 339 (2005).
[6] N. Tsutsui et al. (JLQCD Collaboration), PoS LAT2005, 357 (2005); C. Dawson et al. (RBC

Collaboration) Phys. Rev. D 74, 114502 (2006).
[7] J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 517 (1985).
[8] P.A. Boyle et al. (RBC and UKQCD Collaborations), Phys. Rev. Lett. 100, 141601 (2008).
[9] V. Lubicz et al. (ETM Collaboration), Phys. Rev. D 80, 111502 (2009).

[10] M. Ademollo and R. Gatto, Phys. Rev. Lett. 13, 264 (1964).
[11] J. Noaki et al. (JLQCD and TWQCD Collaborations), PoS Lattice 2010, 117 (2010).
[12] G. Amoros, J. Bijnens and P. Talavera, Nucl. Phys. B 602, 87 (2001).
[13] J. Bijnens and I. Jemos, arXiv:1103.5945 [hep-ph].
[14] J. Noaki et al. (JLQCD and TWQCD Collaborations), Phys. Rev. Lett. 101, 202004 (2008).
[15] S. Descotes-Genon et al., Eur. Phys. J. C 52, 141 (2007).
[16] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
[17] J. Bijnens and P. Talavera, JHEP 03, 046, (2002).
[18] S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004).

7


