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cause of the presence of disconnected graphs. Here welseaoiil demonstrate two practical
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MeV pions. These methods result in non-zero signals for BeifA) and Im@g) from 138 gauge
configurations.
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1. Introduction

To qualitatively understand the experiment phenomena akthe 1/2 enhancement rule and
the direct CP violation in the neutral kaon decay process, a direct cideutd theK® — 77T weak
matrix elements is needed. This includes the calculation of disconnectedsgragitherefore
requires very large statistics. Our previous systematic study of a fulpfirstiple calculation of
kaon decay on a £6< 32x 16 volume lattice with Domain Wall Fermion (DWF) showed promising
results [1] and encouraged us to try to approach physical kinematicslangex volume. Our
ultimate goal is to calculate thél = 1/2 decay amplitude with all physical parameters just as
we have done for thAl = 3/2 decay [2]. Then we can compare the lattice results directly with
experiment, which will provide us a deeper understanding ofMhe 1/2 rule and a check of the
fundamental mechanism of CP violation of the standard model.

While a full calculation with physical kinematics is still out of reach, we extelae previous
calculation to a larger lattice with volume 24 64 x 16, and decreased the pion mass from the
previous 420 MeV to 330 MeV. A simple estimation of the volume effect and tineten of CG
iterations shows that this calculation for each configuration is 27 times moreuttiffnan the
previous one. Therefore, in this work, we concentrate on technigueduae the difficulty of such
a direct calculation. In the following, two techniques will be discussed inildétat the EigCG
Algorithm and then the method with time-separated 1T sources. At the end, we will present our
latest results for bothg andA, from the larger lattice with both techniques incorporated.

2. Setup for the K9 to it decay calculation

The effective weak Hamiltonian for th€° to rrr decay including 2+1 flavors is

10

Hott = Vi 3 [(3(4) + ()10 @)

V2 =

wherez andy; are the Wilson coefficient€); are the ten four-fermion operators. For more details
about the effective weak Hamiltonian, the calculation of Wilson coefficiamid,the definition of
the four-fermion operators, see ref. [3]. To obtain the decay amplitwdesieed to calculate the
weak matrix element 717t Q;|K® > for each of the ten operators on the lattice, then convert them
to theMS scheme, and finally combine with the Wilson coefficients which are alsolatgdclin the
MS scheme. As we have describe this in detail in the Appendix A of [1], theezsion from the
lattice operators into thBIS scheme involves two steps. First we convert it into RI/MOM scheme,
and then convert the RI operators to ¥& scheme.

The most important part of this work is to calculate the weak matrix elements onttice la
Q@ There are four types of contraction as shown in Figurel. The detdiledises of the
different kinds of spin and color contractions for each type and relstdraction graphs are
discussed in our previous work [1].

We use a Coulomb Gauge fixed wall source and sink for the pions and kBenause of the
presence of the disconnected graph (type 4), we are required tdebtogiut the sources on all
possible time slices. Therefore, T (the dimension in the time direction) propagaiihn a wall
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Figure 1. The four types of contractions that contributes to the datan of K° to two pions decay. The
graph circle stands for one of the four-fermion operatdis, lines indicate the propagators(with addition
label s meaning strange quark and otherwise light quark) tlae black dot stands for the kaon or the pion
with a y5 matrix insertion. The type 4 graph is the disconnected graph

source for both light and strange quarks are calculated. Even thaugputationally very expen-
sive, it gives us the freedom to translate the position of the kaon, thatopemd the two pions
simultaneously, thus effectively increasing the statistics from a givengroation. In addition to
the Coulomb gauge wall source propagators, we also calculate T randtsowrce propagators
to estimate the loop shown in the type 3 and 4 contractions by stochastic methoidl,iwe need
to solve ' light quark propagators: on a typical T=64 lattice, this is equivalent t® TiBac op-
erator solves. At this point, itis clear to us that a good algorithm to speetbppgator calculation
is crucial for such a calculation to be manageable.

3. TheEigCG Algorithm

There are two recently published algorithms for the calculation of propegétat could po-
tentially provide a factor of 5-10 speed up. The first one is Lischegxacot low modes defla-
tion algorithm with the domain-decomposed subspaces that are based oogldypcalled local
coherence of the low modes [4]. The second one is the EigCG algorithntablyooulos and
Orginos [5]. With the inexact low modes deflation method, we obtained a bigrfatimprove-
ment with a 16 x 32 8 lattice on a single node machine. However, it turns out to be very difficult
to implement effectively for a highly parallel machine because of the compiestare of the little
Dirac operator in the case of domain wall fermions. The Dirac operat@\WéF Dyt iS not posi-
tively definite, so the operator we solve has tdlig,fDde, the resulting little Dirac operator has
many hopping terms and it is very ineffective to calculate its inverse. In cosgpa the EigCG
algorithm only requires a few linear algebra operations and can easiy sdeassively parallel
machine no matter what the operators are. So we used it in our calculatierdi§advantage of
the EigCG algorithm compared to Lischer’s is the huge requirement of meMevgrtheless, our
current machine has sufficient memory even for the largest lattice weienenty working on, so
it is not a serious issue.
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We follow very closely the original work of EigCG in [5]. Our goal is to sole= b fast for
many right hand side vectors b. Here, the operatore consider is the even odd preconditioned
DWF operatorA = DS'.DRC .. The EigCG algorithm works as follows: it accumulates many low
modes during each normal CG solve; for each new solve, it projects eldvihmode space that

the EigCG algorithm already accumulated by an initial solution
xo=UUTAU)"*UTb (3.1)

where U projects onto low mode space spanned by the low mode vectorsicAl typnvergence
behavior with EigCG is shown in Figure 2. The first solve is exactly the santteeasormal CG
algorithm. The second solve becomes a little bit faster because of the inifietfioa of the low
modes that we already accumulated during the first solve. Gradually,wheatees become faster
and faster with more and more low modes available. Finally we will stop accumulatingodes
and simply do projections to speed up the calculation.

However, there is a clear turning point (aromes~ 10-°) on the convergence curve for the
sped-up solves. It dramatically slows down to the normal CG speed at smne This is because
of the inaccuracy of the low modes we obtained from each CG solve. Tipiae try to obtain
roughly 16 low modes from each solve and throw away a few with eigenvaiger than some
threshold. It is therefore impossible to get all these 16 low modes veryaetu The strategy to
avoid the slow down with the low accuracy low modes is to do multiple projectiongdtpnting
the CG algorithm using the residual of the previous inversion attempt as thegte hand side.
Following the initial projection as shown in Eq.3.1, we do a few more projectioisermiddle
of the solving process. For example, suppose that after n iterationsl#tigeeesidual reduces
to 10°°, with solutionx, and residuat,, = b — Ax,, we can restart the CG with initial solution
Xo =X +U(U TAU)‘luTrn on the equatio®X = r,,. As shown in figure 2, the relative residual
goes straight down once a restart point at°g introduced.

There are two things worth a notice. First, during the low mode accumulation, Stag
prefer not to do multiple restart for the solves since it may affect the effigief the low modes
accumulation. This is the reason that there are turning points in the firstrté@rgence curve
(except the one goes straight down in 1500 iterations) in figure 2. 8Sedahe low modes are
extremely inaccurate, we have to do many projections by restarting the C@&latgaln the worst
case, we may need to do one projection after each CG step. Then we etteldilcorporate the
projection operator in the original operator to perform a so called obligojegtion as Luscher’s
algorithm does [4]. On the other hand, for each restart of the CG, wealbprevious information
about the direction vectors of the CG algorithm (which is the advantage @@t the steepest
descent algorithm), so it leads to a decrease of efficiency of the CGthlgorTherefore, it is
better to do fewer restart, only when it is necessary.

We have shown in figure 2 that we could successfully apply EigCG t6 & 82 x 32 lattice,
and gain a factor of 7 speedup. The number of low modes we accumulategtlieed memaory to
achieve this, and the comparison of the number of iterations to the original @nisiarized in
table 3. Notice that to reduce the memory requirement, we used single preocisitmre the low
modes. This has no negative effect on the EigCG algorithm since the lowsmaglebtained are
not very accurate any way. The largest lattice we testetiX3 x 32) requires 2 Thytes memory,
the code runs efficiently on 4k BGL nodes, which provides 4 Thytes memory.
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Figure 2: Relative residual versus number of iterations using Eig@@ 82 x 64 x 32 DSDR lattice. From
the first 5 propagator solves (60 Dirac solves), the algarstaccumulate more and more low modes. After
that, all new solves converge to 10in roughtly 1500 iterations, by using one restart at210

Table 1: The speedup from EigCG algorithm on different lattidgp Stands for the number of propagator
solves to get the required number of low motlgg,. The symbok means that it is a quenched calculation.

Lattice My CG  Now(Nprop) Total Memory EigCG speed up
162 x32x 16 421 MeV 1840 120(1) 12GB 370 5.0
162 x32x 16 204 MeV 3200 120(1) 12 GB 460 7.0
243 x64x16 330 MeV 2900 400(4) 272 GB 530 5.5
328 x64x32 180 MeV 10400 600(5) 2TB 1480 7.0

4. Time separated 11— 71 S0Ur ce

We separate the two pion sources in the time directio lffigure 3) , therefore reducing
the correlation between the two pion sources. It can dramatically reduesad¢kiem noise from
the disconnected graph. For example, the error on the isospinrzem energy is reduced from
0.0126 to 0.0055 by introducing a separation of 4 between the two pionshomsn figure 4,
the effective mass plateau also begins earlier, even though we still usaldifilng range 5 to 15,
inclusive.

5. KO to rrrr decay amplitudes and conclusion

Using the techniques we have mentioned, we performed a threafold 2m;, K — it
calculation on &N = 2+ 1 flavor 24 x 64 x 16 lattice with DWF, Iwasaki gauge actioa; ! =
1.72930) GeV, and a 330 MeV pion mass. The EigCG algorithm speeds up the calcutgten
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Figure 3: Separating the two pion sources in the time direction. Tfigplnel shows the setup for the—
scattering calculation, and the right panel shows the detujpe k — it decay calculation.
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Figure4: Effective mass plot for the two pions in the isospin zero clenThe left one uses— rTseparation
0, and the right one uses 4. The energy calculated from thessdtups is 0.3922(126) and 0.3639(55)
respectively.

factor of 5, and introducing a separation between the two pion sourcésiakes the signal much
better.
Once we calculate the correlation functions, we do a single parameter fitdidhinweak

matrix elements,

Ok (0)Qi(top) Orn(D, A+ O

Ol )?\II;(T:IEILeIEWAv to) M,/ 22t (Me—Emt (5.1)
where the kaon energy armd— 1 energy are fitted from the kaon amdr correlation functions.
Results for operato®, which makes a major contribution ®gAg) and the operato®s which
makes a major contribution tan(Ag) are shown in figure 5. A summary of the final results obtained
by combing NPR and Wilson coefficients are shown in table 5. This calculatiparisrmed on
138 configurations.

In summary, we performed a full first principle calculation for b8ghandAg in a 2.7 fm box,
with a 660 MeV kaon decaying to two 330 MeV pions. The agreement of thatsewith and
without disconnected graphs indicats that the diconnected graphs mahayatcrucial role in this
particular decay process. A ratio of 12.0(1.7) R&Ao) to RgAy) suggests already a dramatic
Al = 1/2 rule effect. The direct CP violation measiReg &’ /) is calculated to be.R(1.7) x 1073
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Figure 5. The weak matrix element for m75—o|Qo|K® > (left) and < mrj—o|Qe|K® > (right). The x-axis
represents the position of the operator relative the the kawd y-axis is the amplitude defined in Eq. 5.1.
The’ symbol represents the result without the disconnectechgidje used\ = 16, andd = 4 here.

for these unphysical kinematics. In the future, we are going to collect siatistics to resolve a
clear signal for’ and then move to a calculation with physical kinematics.

Table 2. K9 — it decay amplitudes for a threshold calculation with ~ 2m;.. The unit for Real part
is x10~8 GeV, and Imaginary part is 10 12GeV. The symbol indicates that the disconnected graphs are
ignored.

m{(MeV) mx(MeV) Re) Red;) Im(Ao)  Im(Ap) Re@A) Im(A)
329.3 662.1  31.1(4.5) 27.8(0.8) -33(15) -36.3(16) 2.668(14) -0(E809

Acknowledgements | thank very much all my colleagues in the RBC and UKQCD collabo-
rations for discussions, suggestions, and help. | especially thank nigoagvof. Norman Christ
for detailed instructions and discussions. | acknowledge Columbia WsitiyeRIKEN, BNL, ANL
and the U.S. DOE for providing the facilities on which this work was performigds work was
supported in part by U.S. DOE grant DE-FG02-92ER40699. Finallguld/like to thank the U.S.
DOE for support as a DOE Fellow in High Energy Theory.

References

[1] T.Blum et al, K to it Decay amplitudes from Lattice QCBr Xi v: 1106. 2714 [ hep-1lat].
[2] E. Goode, PoSLATICE 2011 (2011) 313.

[3] G.Buchalla, A. J. Buras and M. E. LautenbachWeak decays beyond leading logarithiRsv. Mod.
Phys.68 (1996) 1125-11444r Xi v: hep- ph/ 9512380].

[4] M. Luscher,Local coherence and deflation of the low quark modes in RHED, JHEP 0707 (2007)
081 far Xi v: 0706. 2298 [ hep-1lat]].

[5] A. Stathopoulos and K. Orgino§omputing and deflating eigenvalues while solving multijgjkt
hand side linear systems in Quantum Chromodynar§isM J. Sci. CompuB2 (2010) 439-462
[ar Xi v: 0707. 0131 [hep-lat]].



