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Set r1/a ml/ms aml,s aMb Ncon f Ntsrc L3×Nt

(sea) (valence) (valence)

C1 2.647 0.005/0.050 0.0070 2.650 1200 2 243×64
0.0489 1200 2

C2 2.618 0.010/0.050 0.0123 2.688 1200 2 203×64
0.0492 1200 2

C3 2.644 0.020/0.050 0.0246 2.650 600 2 203×64
0.0491 600 2

F1 3.699 0.0062/0.031 0.00674 1.832 1200 4 283×96
0.0337 1200 4

F2 3.712 0.0124/0.031 0.0135 1.826 600 4 283×96
0.0336 600 4

F0 3.695 0.0031/0.031 0.00339 1.832 work in 4 403×96
0.0339 progress 4

Table 1: Simulations details on three “coarse” and three “fine” MILC ensembles.

1. Introduction

Leptonic decays of chargedB’s such asB+ → τ+ντ , are important processes for Cabbibo-
Kobayashi-Maskawa (CKM) and Unitarity Triangle (UT) physics. There is currently some tension
betweenεK , sin(2β ), |Vub| andB(B+→ τ+ντ) and theB meson decay constantfB plays an impor-
tant role in such analyses. For instance global fit results for fB from precision electroweak data are
being compared with “direct Standard Model predictions” ofthe decay constant from lattice QCD
[1, 2, 3]. Reducing errors in the lattice determinations offB is, hence, a worthwhile high priority
goal.

For theBs meson there are no tree-level leptonic decays in the Standard Model (SM). Never-
theless the decay constantfBs is a useful parameter in many decay and mixing rates both within
and beyond the SM. Furthermore, lattice QCD determinationsof fBs can be achieved with smaller
errors than forfB since no light valence quarks are involved here. This combined with the fact that
the ratio fBs

fB
is also known more accurately (due to cancellation of statistical and many systematic

errors) than either of the decay conatants on their own, opens the possibility of getting at precision
fB via precision values forfBs and fBs

fB
.

The HPQCD collaboration has initiated new calculations of the B andBs meson decay con-
stants based on NRQCD bottom and HISQ light and strange valence quarks and employing MILC
N f = 2+1 configurations. This improves on previous determinationsof fB, fBs and fBs

fB
by HPQCD

that used AsqTad light and strange valence quarks [4]. Simulation details are summarized in Table
1.

2. Tuning of Quark Masses

We use the static potential quantityr1 = 0.3133(23)fm [5] to set absolute scales andr1/a from
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Figure 1: Tuning of theb-quark mass using the spin averagedϒ mass.

MILC [6] for relative scales between different MILC ensembles. To fix the bareb-quark mass in
lattice unitsaMb we use the spin averagedϒ mass. One calculates,

Mbb ≡
1
4

[

3Mkin(
3S1)+Mkin(

1S0)
]

, (2.1)

with

Mkin =
p2−∆E2

p

2∆Ep
, ∆Ep = E(p)−E(0), (2.2)

and compares with the experimental value (adjusted for the absence of electromagnetic, annihila-
tion and sea charm quark effects in our simulations) of 9.450(4)GeV [7]. Results from this tuning
are shown in Fig.1. Errors in the data points include statistical andr1/a errors. One sees that
these are much smaller than the 0.7% error in the absolute physical value ofr1. To achieve small
statistical errors inMkin it was crucial to employ random wall sources for the NRQCDb-quark
propagators. With point sources errors would have been about 4∼5 times larger. Thes-quark mass
was tuned to the (fictitious)ηs mass of 0.6858(40)GeV [5]. Having fixed the bottom and strange
quark masses on each ensemble one can check how wellMBs −Mbb/2 is reproduced in the contin-
uum limit. The leading dependence on the heavy quark mass cancels in this difference, so one is
testing how well the lattice actions are simulating QCD boundstate dynamics. Results for this mass
difference are shown in Fig.2. Within ther1 scale error and additional∼10MeV uncertainty from
relativistic corrections toMbb one sees agreement with experiment in the continuum limit.

3. The Currents and Matching

In theBq meson rest frame (q = light or strange) the decay constant is defined in terms of the
temporal component of thebq heavy-light axial vector currentA0 as,

〈0| A0 |Bq〉QCD = MBq fBq . (3.1)
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Figure 2: The mass differenceMBs −Mbb/2 versus the square of the lattice spacing for the first five ensem-
bles of Table 1. One sees negligible sea quark mass dependence but a noticeable lattice spacing dependence.

Simulations are carried out with effective lattice theory currents,

J(0)
0 (x) = q̄(x)Γ0Q(x), (3.2)

J(1)
0 (x) =

−1
2Mb

q̄(x)Γ0γ ·∇Q(x), (3.3)

J(2)
0 (x) =

−1
2Mb

q̄(x)γ ·←−∇ γ0 Γ0Q(x), (3.4)

and matching through orderαs,
ΛQCD

M , αs
aM , aαs, αs

ΛQCD

M gives,

〈A0〉QCD = (1+αs ρ0)〈J(0)
0 〉+(1+αs ρ1)〈J(1),sub

0 〉+αs ρ2〈J(2),sub
0 〉, (3.5)

J(i),sub = J(i)−αs ζ10J(0). (3.6)

ρ0, ρ1, ρ2 andζ10 are the one-loop matching coefficients which have recently been calculated for
NRQCD/HISQ currents.

4. Preliminary Results and Error Estimates

Figs.3 & 4 show our preliminary chiral/continuum extrapolations of fBs

√

MBs , fB
√

MB and the
ratio fBs

√

MBs/ fB
√

MB based on the first five ensembles of Table 1. Work on the sixth ensemble
F0, a more chiral fine ensemble, is in progress. Extrapolations are carried out using continuum
partially quenched ChPT for heavy-light decay constants augmented by lattice spacing dependent
terms. Our preliminary numbers at the physical point are,

fB = 0.191(9)GeV, fBs = 0.226(10)GeV, fBs/ fB = 1.184(19). (4.1)
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Figure 3: Continuum/chiral extrapolations offBs

√

MBs (upper curves) andfB
√

MB (lower curves). The
black circles are results at the physical point from reference [4] using AsqTad light and strange valence
quarks.
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Figure 4: Continuum/chiral extrapolation of the ratiofBs

√

MBs/ fB
√

MB. The black circle is the result at
the physical point from reference [4] using AsqTad light andstrange valence quarks.
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Source fBs fB fBs/ fB

(%) (%) (%)

Statistical 0.7 1.1 0.9

Scaler3/2
1 1.1 1.1 —

continuum extrap. 0.9 0.9 0.8
chiral extrap. 0.3 1.0 1.0

gB∗Bπ 0.1 0.1 0.1
mass tuning 0.2 0.1 0.2

relativistic correct. 1.0 1.0 0.0
operator matching 4.0 4.0 0.1

Total 4.4 4.6 1.6

Table 2: Preliminary error budget

Table 2 shows a preliminary error budget.

The new NRQCD/HISQ numbers are consistent with HPQCD’s NRQCD/AsqTad results of
fB = 0.190(13)GeV, fBs = 0.231(15)GeV, fBs/ fB = 1.226(26) [4]. The reduction in errors in the
new calculations comes mainly from improvement in discretization errors, smallerr3/2

1 scale un-
certainties and better fitting and extrapolation strategies. The striking decrease in lattice spacing
dependence as one goes from AsqTad to HISQ strange quarks is demonstrated in Fig.5, where
we comparefBs

√

MBs results on the same ensembles for the two different valence quark actions.
Although this improvement in discretization errors is verywelcome, in both the present and pre-
vious calculations the total error is dominated by the higher order operator matching uncertainty.
HPQCD is investigating nonperturbative matching strategies for NRQCD/HISQ currents which
could reduce this error in the future [8].

In a completely different thrust, we are pursuing an alternate approach toB physics that uses
the relativistic HISQ action for heavy quarks with massesmH > mcharm on very fine lattices [9, 10].
One can then extrapolate up to the physicalb-quark staying always within a relativistic frame
work. A recent result using this method givesfBs = 0.225(4)GeV [11] in excellent agreement with
eq.(4.1), however with much reduced errors. Using relativistic heavy quarks enables us to work
with absolutely normalized currents (based on Ward identities). The main source of the larger
errors with NRQCDb-quarks, namely operator matching uncertainties, is thus removed. In order
to carry out heavy HISQ calculations that can be extrapolated to the physicalb-quark, very fine and
hence large lattices are required. Repeating thefBs determination forfB would be quite expensive.
So for the next couple of years we believe the best strategy for precisionB physics will be to
work with HISQ heavy quarks forBs physics and combine these results with ratios, such asfBs/ fB

from NRQCDb-quark calculations. The calculations presented here are part of this comprehensive
approach to precisionB physics.
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Figure 5: Comparison of lattice spacing dependence between NRQCD/HISQ results forfBs

√

MBs from
the current calculations (open circles and triangles) and previous results from reference [4] based on
NRQCD/AsqTad quarks.
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