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A chirally invariant Higgs-Yukawa model John Bulava

The development of a lattice regularization of the Dirac fermion bilinear which respects a
chiral symmetry at finite lattice spacing [1] suggests that lattice studies of the Higgs-Yukawa sector
be revisited [2,3]. To this end, we examine a model which contains a single complex scalar doublet
and two fermion fields, the left-handed components of which are associated into a doublet. The
continuum Lagrangian density of our model is therefore

L =
1
2
(∂µφ)2 +

1
2

m2
φ

2 +λφ
4 + t̄ /∂ t + b̄/∂b+ y

(
t̄
b̄

)T

L
φbR + y

(
t̄
b̄

)T

L
iσ2φ

∗tR +h.c., (1)

where t and b denote the fermion fields and σ2 is the second Pauli matrix. Note that we have set
the Yukawa couplings of both fermion fields to be equal. Additionally, we shall find it convenient
to define the parameters κ and λ̂ via

λ =
λ̂

4κ2 , m2 =
1−2λ̂ −8κ

κ
. (2)

At finite lattice spacing, the overlap discretization is used, which provides well-defined chiral pro-
jectors to isolate the left and right handed components of the fermion fields. For details on the
discretization, see Ref. [4]. Furthermore, it is assumed that we are in the broken phase where the
scalar field acquires a non-zero vacuum expectation value v. Although there is no explicit fermion
mass term in the Lagrangian, in the broken phase the fermions acquire a mass (m f ) which at lead-
ing order in the quartic and Yukawa couplings is proportional to y× v. Large Yukawa couplings
are therefore required to study the model at large m f , where the perturbative expansion may break
down.

Due to the lack of gauge fields (the effects of which presumably can be described perturba-
tively), the complicated Neuberger-Dirac operator is diagonal in momentum space and may there-
fore be constructed exactly, up to machine precision. The model can then be evaluated efficiently
using the Fast Fourier Transform (FFT) algorithm.

To simulate the model, we employ the pHMC algorithm [5], with many improvements [4].
Specifically, Fourier acceleration [6, 7] is necessary to reduce the autocorrelation times of low-
momentum modes of the Higgs and fermion propagators, and several types of preconditioning
have been used to reduce the condition number of the Dirac operator.

We set the scale in our theory via the renormalized vacuum expectation value vR of the scalar
field, which is non-zero in the broken phase. In the standard model, this can be expressed as

vR =
v√
ZG

=
2MW

g
= 246GeV, (3)

where g is the weak gauge coupling and ZG is the renormalization constant for the Goldstone boson
propagator determined by the condition

Z−1
G =

d
d p2 Re (G−1

G (p2))
∣∣

p2=m2
G
. (4)

In practice ZG is determined from fits to the Goldstone propagator.
The lattice cutoff in our theory cannot be removed while maintaining non-zero interactions.

This is the well known triviality (i.e. existence of a Landau pole in perturbation theory) of the φ 4
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theory. There is some evidence from the large-NF expansion [2] that the theory with fermions is
also trivial.

This model has been used to study the triviality and vacuum instability bounds of the Higgs
boson at m f = mt = 175GeV [8, 9] as well as the phase structure of the theory [3, 10]. It has been
shown that in the φ 4 theory the Higgs boson mass is an increasing function of the bare quartic
coupling λ at a fixed value of the cutoff [11]. Furthermore, the quartic coupling must be ≥ 0
to preserve the stability of the theory. It was found for the model considered here [8] that the
maximum value of the Higgs boson mass occurs at λ = ∞ while the minimum occurs at λ = 0.

The Higgs mass is determined by the pole position of the Higgs boson propagator

Re (G−1
H (p2))

∣∣∣
p2=−M2

H

= 0. (5)

We determine the pole position by fitting the propagator to an ansatz which neglects the finite
width of the Higgs to decay into Goldstone bosons. The Higgs mass can also be determined from
the temporal correlation function of two suitable interpolating fields.

Particular attention must be paid to finite volume effects in the model. Due to the lack of
an explicit symmetry breaking parameter in our Lagrangian, we are in the so-called ε-regime,
rather than the p-regime where most lattice QCD simulations are performed. In the ε-regime finite
volume effects decrease with L−2 rather than e−ML for the p-regime [12,13]. Due to these algebraic
finite size effects, an infinite volume extrapolation of the data is necessary. An example of such an
extrapolation is shown in Fig. 1.
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Figure 1: Finite size effects in (from left to right) the renormalized vacuum expectation value, fermion
mass, and Higgs Boson mass at Λ = 1/a = 1.5TeV and λ = ∞. Data are shown for several values of the bare
Yukawa coupling corresponding to fermion masses in the range m f = 200...700GeV. While the renormalized
vacuum expectation value exhibits asymptotic behavior already at rather small lattice volumes, for a reliable
infinite volume extrapolation of the Higgs boson mass, larger volumes are required.

This procedure was first carried out for the situation m f = mt = 175GeV [8] and repeated for
m f = 676GeV [14] for various values of the lattice cutoff. Results from these two calculations are
shown in Fig. 2. We now report on additional results from a scan in m f at fixed cutoff Λ = 1/a =

1.5TeV. These results are shown in Fig. 3 and should be regarded as preliminary, as an infinite
volume extrapolation for the lower bound has not yet been performed.

As we discussed above, the method for determining the Higgs boson mass neglects its finite
decay width into Goldstone bosons. Here we report on a calculation of the resonance parameters

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
3
0
1

A chirally invariant Higgs-Yukawa model John Bulava

mt = 173± 3GeV
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Figure 2: The cutoff dependence of the upper and lower Higgs boson mass bounds for the physical top
quark mass m f = mt = 175GeV (left) and for m f = mt ′ = 676GeV (right). All data have been extrapolated
to infinite volume.

lower bound (preliminary)
upper bound

mt′ [GeV]

M
P H
[G

eV
]

800700600500400300200100

800

700

600

500

400

300

200

100

0

Figure 3: Higgs boson mass bounds at Λ = 1/a = 1.5TeV as a function of m f = mt ′ . The data for the upper
bound has been extrapolated to infinite volume, while for the lower bound the results were computed on a
single (243×48) volume and are therefore preliminary.

of the Higgs boson [15], demonstrating that at m f = mt the mass obtained by a resonance fit to the
scattering phase shift is statistically equivalent to the pole mass and correlator mass.

Infinite volume elastic scattering phase shifts may be extracted from finite volume lattice data
by examining the dependence of the energy eigenvalues near elastic thresholds [16]. As this tech-
nique is valid only for elastic scattering, we must add a small explicit symmetry breaking term to
the Lagrangian, which generates a finite Goldstone boson mass MG. The magnitude of the symme-
try breaking parameter is chosen such that MG ≈MH/3. Accordingly, our results for the scattering
phase shift are confined to the region k < 2MG.

To extract energy eigenvalues of the lattice Hamiltonian, a matrix of correlation functions must
be constructed and the corresponding generalized eigenvalue problem (GEVP) must be solved [16,
17]. The momentum resolution of the scattering phase shifts is increased by examining the system
at rest and in a moving frame [18]. Results are shown in Fig. 4 and Tab. 1. From this analysis we
can see that at least for m f = mt and MG ≈MH/3, the Higgs boson has a relatively narrow width
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to decay into two Goldstones and determinations of the Higgs boson mass that neglect this decay
width are consistent with the full resonance analysis.
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Figure 4: The scattering phases (left) and the total cross section (right) for Λ ≈ 1.5TeV at m f =

mt = 175GeV and λ̂ = 1.0. These results are from various lattice volumes: Ls/a× 40 with Ls/a =

12,16,18,20,24,32,40. Points obtained using both the center of mass frame (c.o.m) and moving frame
(m.f.) are shown. Adding the moving frame is crucial to obtain a reasonable momentum resolution. The
vertical line in the left plot denotes the inelastic threshold.

λ̂ Cutoff Λ=1/a aMR
H aΓR

H aMP
H

0.01 883(1) GeV 0.2811(6) 0.007(1) 0.278(2)
1.0 1503(5) GeV 0.374(4) 0.033(4) 0.386(28)
∞ 1598(2) GeV 0.411(3) 0.040(4) 0.405(4)

Table 1: The resonance mass MR
H of the Higgs boson together with the resonance width and the mass

extracted from the propagator MP
H at m f = mt = 175GeV. For all three values of the bare quartic coupling,

the width is less than 10% of the resonance mass.

Another physical observable that may be studied in this model is the finite temperature phase
transition from the symmetric phase to the broken phase, which may have implications for elec-
troweak baryogenesis [19]. This phase transition is known to be second order in pure φ 4 theory
(see e.g. Ref. [20]). However, when SU(2) gauge fields are added, the transition becomes first
order as in Ref. [21].

The temperature in lattice field theory is changed by varying the temporal extent of the lattice,
with periodic (anti-periodic) temporal boundary conditions for the boson (fermion) fields. The
phase transition temperature is determined by first choosing a temporal extent Lt/a in lattice units
and performing a scan in κ at fixed λ = ∞ to determine the peak in the susceptibility.

The value of κ at which the susceptibility peaks is then used to perform a zero temperature
(Lt = ∞) simulation to set the scale in the usual way, from the zero temperature vacuum expectation
value. From this scale we can determine T = 1/Lt in physical units. Results for the susceptibility
and Lt/a = 4,6 are shown in Fig. 5. The preliminary value of the phase transition temperature is
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similar at these two values of the lattice spacing and is ≈ 500GeV in comparison to ≈ 350GeV in
the pure φ 4 theory.
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Figure 5: The susceptibility as a function of κ for m f = mt = 175GeV. The data shown is for λ = ∞ and
should be considered preliminary. The left plot corresponds to Lt/a = 4 while the right to Lt/a = 6. The
dotted lines are from fits to finite size and critical scaling ansatz χ = A(L−2/ν

s +B(κ−κc)
2)−γ/2 where, due

to limited (preliminary) statistics, we have fixed γ = 1.38 and ν = 0.68. The critical temperature determined
from the Lt/a = 4 lattices is Tc = 514(15)GeV while from the Lt/a = 6 lattices it is Tc = 491(24)GeV.

In conclusion, studies of several physical quantities in our chirally-invariant Higgs-Yukawa
model are underway. The dependence of the Higgs boson mass bounds on m f and a has shown
that the lower bound seems to be sensitive to the mass of the fermion doublet, but rather mildly
sensitive to the value of the lattice cutoff. We will complete an m f -scan of these bounds in the
near future. We also plan to repeat the determination of the Higgs boson resonance parameters
at several values of m f . Additionally, it may be interesting to look for bound states of Goldstone
bosons and quarks. The finite temperature phase transition in our model may have implications for
electroweak baryogenesis. We plan to complete this analysis at several values of m f and a.
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