
P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
3
0
2

Efficiency on multi-core CPUs: the Wilson Dirac
operator on Aurora

Michele Brambilla ∗

ECT*
E-mail: brambilla@ectstar.eu

Francesco Di Renzo
University of Parma and INFN
E-mail: francesco.direnzo@fis.unipr.it

Marco Grossi
ECT*
E-mail: mgrossi@ectstar.eu

An optimized code has to be tuned to the CPU architecture: a current trend in modern CPUs is the

increasing number of cores per socket, with different levels of cache. It turns out to be natural to

have different parallelization “granularities” (multithreading and multiprocessing) characterized

by completely different bandwidth and latencies.

We present different strategies for the implementation of the Wilson Dirac operator which aim at

maximizing the performance on the Aurora architecture.

The XXIX International Symposium on Lattice Field Theory - Lattice 2011
July 10-16, 2011
Squaw Valley, Lake Tahoe, California

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:brambilla@ectstar.eu
mailto:francesco.direnzo@fis.unipr.it
mailto:mgrossi@ectstar.eu

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
3
0
2

Efficiency on multi-core CPUs: the Wilson Dirac operator on Aurora Michele Brambilla

1. Introduction

Numerical computations in unquenched lattice QCD require the inversion of theDirac opera-
tor, i.e. a large, sparse matrix. The usual approach is to perform such an inversion via an iterative
algorithm, usually some variant of conjugate gradient. This requires to applymany and many times
the Dirac operator, whose main operation is a (complex) matrix-vector multiplication(the Dslash
operator).

The traditional approach to high performance LQCD computations entails a few steps. One
first of all looks for a clever algorithm which reduces the number of computations; then one im-
plements it exploiting the features of the machine on which the program will run (e.g. vector
operations); eventually one devises a parallel version. In all these steps, optimization is a machine
dependent task.

In recent years the CPU architecture has been quickly changing. A single CPU is made of
more than one core, whose resources can be partially doubled in order toallow hyperthreading.
The number of cache levels has been increasing (from 2 to 3, with the cores on the same socket
possibly sharing L3). Boards are usually provided with more than one CPU(SMP architecture).
Are traditional approaches to LQCD computations still effective, or do we have to take something
else into account to improve efficiency of our programs?

In the first part of our work we try to explore how one can exploit the newarchitectural features
in order to improve the performances of LQCD codes. We perform such astudy on the Aurora
machine prototype [1] based in Trento, which we will briefly describe in the next section. The
second part of our work involves the merging of this new understanding with a key feature of
Aurora, a 3-D toroidal network based on FPGA.

2. The Aurora system

The Aurora machine is based on commodity Intel Xeon 5600 series (Westmere) processors
running at 3.33GHz. The building block of the machine is a nodecard consisting of two processors
connected to each other via the QPI bus (Intel QuickPath Interconnect) with a bandwidth of 6.4
GT/s. Each processor is made of 6 cores and is connected to 6 GB of DDR3memory@1333MHz.
The 6 cores share 12MB level 3 (L3) cache. Each core has 256KB level 2 (L2) and 32KB level 1
(L1) private cache. Caches are inclusive: what is contained in L1 is also present in L2 and L3 (the
same holds for L2). The architecture supports 2-way hyperthreading:in hyperthreading mode one
has 24 cores per nodecard. In addition to scalar units, each core has 16 SSE registers which allow
to perform a broad range of SIMD computations, namely SSE 4.2 instructions[2]. In each clock
cycle the core can perform 2 (SIMD instruction)×2 (execution unit) double precision operations,
resulting in∼ 13.3 GFlops/core and∼ 160 GFlops/board.

Nodecards are interconnected by a high speed FPGA based torus network [3]. Each direction
on the torus network has a bandwidth of 1 GB/s and a latency of∼ 1 µs. We studied the strong
scaling behaviour of the machine on a 483×96 lattice, ranging from 4 to 16 boards.

2

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
3
0
2

Efficiency on multi-core CPUs: the Wilson Dirac operator on Aurora Michele Brambilla

3. Wilson Dirac operator

Our study refers to the Wilson Dirac operator

φ ′
x = (m0 +4r)φx−

1
2

4

∑
µ=1

{

Ux,µ(1− γµ)φx+µ̂ +U†
x−µ̂,µ(1− γµ)φx−µ̂

}

(3.1)

The computational effort required by the Dirac operator can be reduced observing [4] that
P±

µ = 1± γµ is a spin projector; this reduces the effective number of spin components from 4
to 2. Only two components have to be multiplied by the correspondingU matrix; the other two
components are then reconstructed. To update each lattice site one has to collect the 8 neighbour
spinors (each made of 24 double). All in all, the algorithm performs 1396 flops operating on
∼ 1.5 KB (double precision) data for each site.

Data layout is SIMD friendly: space-time indices run slower while spin, colorand real/imaginary
run faster. Such a layout allows to keep data required for the update of asite in contiguous memory
regions.

We exploited SIMD programming via SSE intrinsics, which appear more natural toimplement
than assembly code. The resulting code reads something like

__m128d x2 = _mm_mul_pd(R2,(v+i)->whr[0].m);

v2 = _mm_addsub_pd(_mm_shuffle_pd(x2,x2,1), ...

Westmere processors introduce the new standard SSE4.2. In particular anew instruction turns
out to be very useful for our purposes:_mm_dp_pd computes the dot product between two SSE
registers. Exploiting this feature the dot product of two double precision complex numbers is one
instruction cheaper. However, the results presented in this proceeding does not exploit this feature:
if not carefully tuned it can give rise to bottlenecks in the pipeline.

4. Single board optimization

In the case of a single board we consider multithread parallelization viapthread. We made
our tests on different lattice sizes and considered different approaches, which we will describe
later in this section. We make use of the hyperthreading feature of Westmere processors: in this
way it is natural to accommodate up to 24 computing threads. Since not all the physical resources
of the CPU are doubled in the core, the expected speedup is less than 2: themeasured value is∼1.2.

The most relevant issue in multithreading is to find out how to split the lattice between threads
in order to achieve the best performances. Partitioning is enforced takingcare of core affinity and
memory binding. One makes sure that each thread will be executed on a precise core (physical
or virtual) and that all the memory resources will be allocated on the proper socket (inter-socket
communications are quite slow).

3

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
3
0
2

Efficiency on multi-core CPUs: the Wilson Dirac operator on Aurora Michele Brambilla

S2

S1

x2,x3,x4

x1

Figure 1: Along the slowest di-
rection the lattice is sliced into
two big chunks across the two
sockets: this reduces the number
of inter-socket communications.

All in all, we want to reduce the number of times
one core has to retrieve data accessing memory resi-
dent on the other socket. In order to do that, we
slice the lattice into two large blocks along the slow-
est direction (x1) and bind each block to a different
socket. All the threads resident on socket 0 will take
care of one slice, while the threads resident on socket
1 will take care of the second slice (see the figure).
Only at the boundaries (with respect to the slowest direc-
tion) one needs to access memory resident on the other
socket.

To further improve efficiency, one also needs to take into account accesses to different cache
levels (even though L3 and L2 latency is low and bandwidth high). Our approach is to fit the fastest
running direction (x4) inside L2 cache. To perform this we tried two different approaches: afirst
case named “interleaved”, the latter named “traditional”. Refer to Fig. 2:

• in the “interleaved” approach a thread takes many chunks, each of the minimum (1) size
along the second fastest direction (x3); in the figure (where 4 threads are at work) the resulting
stride is 4.

• in the “traditional” case each thread takes care of a single chunk, resultingin a non-trivial
size along the second fastest direction (x3).

x4

x3

t0

t0

t1

t1

t2

t2

t3

t3

(a)

x4

x3

t0

t1

t2

t3

(b)

Figure 2: Different approaches to parallelization in thex3 direction: either one thread con work on many
smaller chunks or on a single bigger one.

Using hyperthreading, each couple of real+virtual cores take care ofcontiguous sublattices:
this is expected to improve cache efficiency since L1 and L2 caches are shared between the real
and virtual core (only registers are duplicated). The “traditional” approach shows the best perfor-
mances, with a peak of 52.6 GFlops/board.

In both approaches the intra-node parallelization was alongx1 (the slowest) andx3 (the second
fastest) directions. We have already commented on the choice ofx1 (this optimizes accesses to

4

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
3
0
2

Efficiency on multi-core CPUs: the Wilson Dirac operator on Aurora Michele Brambilla

lattice size GFlops

8×4×242 52.6
123×24 32.2
243×48 21.4
242×482 20.2
24×483 20.3

Table 1: Single board performances at different lattice size. Once data is out-of-cache the performance
reaches aplateau.

the other socket). The second choice reduces the amount of data needed in lower cache levels,
implementing a cache blocking strategy. In this way each thread has a contiguous and aligned
memory access to the fastest direction, with a chunk size as small as possible tofit into the L1
cache.

If the lattice does not fit into the L3 cache, performances can even go down (in out-of-cache ex-
ecution) to∼20 GFlops/board. Analyses performed with OProfile, monitoring hardwarecounters
like CPU_CLOCK_UNHALTED and MEM_LOAD_RETIRED.LLC_MISS, show that L3 cache
miss costs 25% of execution time. The latter does not come as a surprise, sinceeach miss costs
∼180 clock cycles for a memory load in the local NUMA node. Performing the same analysis
without hyperthreading we find that L3 cache misses are only a small fraction with respect to the
former case: this is a limiting factor on hyperthreading approach, which nevertheless shows the
best performances.

5. Parallelization

Parallelizing the execution on multiple boards requires to manage the communicationand
synchronization overhead on top of what we have already commented on single node execution.
We can think of a computational and a communication sections:

• during the computational sections, all the threads (i.e. 24 threads) work together on proper
computations;

• during the communication sections, only a few threads (8 threads, 4 per socket) are involved
in the exchange of boundaries between nearest neighbour; all othersthreads (16 threads, 8
per socket) keep on going with proper computations; in this stage the lattice hasa different
partitioning (16 instead of 24 chunks).

This unbalancing (which has to be carefully tuned) allows to mask the communications time. Our
parallelization fully exploits the custom toroidal network; MPI communications are only devoted
to synchronization calls between boards (i.e. barrier).

We performed strong scaling tests on a 483× 96 lattice using 4, 8 and 16 boards. One can
roughly devise at least two parallelization strategies:

• keep fixedx2, x3 andx4 and only scalex1;

5

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
3
0
2

Efficiency on multi-core CPUs: the Wilson Dirac operator on Aurora Michele Brambilla

• scale sizes in more than one directions.

The latter performs better, as expected, because the sublattice becomes toosmall in the former
case: it spends too much time in communication as compared to computation.

Lattice size Local sublattice

x1 48 24 12 6
x2 96 48 48 48
x3 48 48 48 48
x4 48 48 48 48

GFlops/board 18.7 15.4 11.1
speedup 1 1.65 2.37

Lattice size Local sublattice

x1 48 24 24 12
x2 96 48 24 24
x3 48 48 48 48
x4 48 48 48 48

GFlops/board 18.7 17.6 16.4
speedup 1 1 .88 3.51

Table 2: Comparison between different strong scaling approaches. Results refers to 4, 8 and 16 board case.

The speedup in the 8 and 16 boards cases (computed with respect to the 4 boards case) is close
to the ideal values of 2 and 4; since we are out-of-cache both in 4 and 16 boards cases, we cannot
expect a superlinear speedup.

We compared strong scaling results obtained using our custom code with those obtained using
a variant of ETMC code which improves performances on Aurora [5]. In Fig. 3 one can see that
our approach gives better performances using a small number of boards. Increasing the number of
node cards performances are roughly the same.

0 10 20 30
0

5

10

15

20

Nr. of node cards

P
e
rf
./
n
o
d
e
c
a
rd
[G
F
lo
p
s
]

48
3
x 96

32
3
x 64

(a)

0 10 20 30
0

5

10

15

20

Nr. of node card

P
er

f/n
od

e
ca

rd
 [G

F
lo

ps
]

483 x 96

(b)

Figure 3: Strong scaling comparison between ETMC code(a) and our custom implementation(b).

When comparing these results one has to keep in mind that there are deep differences between
ETMC and our custom implementation. In the former case structures are optimized for computa-
tions, and in order to improve communications one need to gather and pack datato be sent, perform
the communication and finally unpack and scatter the received message. In our case data structures
are aligned for communications: we don’t need to pack and unpack data, but this results in a slightly
more fragmented memory image as far as computation requirements are concerned.

6

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
3
0
2

Efficiency on multi-core CPUs: the Wilson Dirac operator on Aurora Michele Brambilla

Moreover ETMC communications rely on MPI over INFINIBAND, while this case of study
is based on the custom Aurora Torus Network (ATN): the latter is still underdevelopment, and at
the time the expected communication performance was∼50% peak.

6. Future directions

We expect to be able to further improve both single board and parallel implementations of the
code.

In both cases efficiency can be increased improving the SSE implementations of the compu-
tational kernel: at the moment this is performed mainly using SSSE3, and we arestudying a more
performant based on SSE4.2. The bottleneck is that the single instruction which would reduce the
number of flops introduces in turn higher latencies in the pipeline.

In the parallel implementation we expect that a rearrangement of data structures can improve
communications, without loosing the alignment. This would allow a reduction of the number of
threads involved in communications. At the same time this would allow a reduction in thetotal
amount of data sent.

Exploiting prefetching is another candidate for improvement. A clever usageof profiling tools
could result in a better understanding of the cache miss issue, which in turn could hint prefetching
strategies.

Acknowledgments

The AuroraScience project is funded by the Provincia Autonoma di Trento and the Istituto
Nazionale di Fisica Nucleare, in the framework of an agreement with the Fondazione Bruno Kessler.

References

[1] F. Di Renzo [AuroraScience Collaboration], “Status of the AuroraScience project,” PoS
LATTICE2011 (2011) 031.

[2] Intel R© SSE4 Programming Reference, 2007,
http://www.intel.com/design/processor/manuals/253667.pdf.

[3] M. Pivanti, S. F. Schifano and H. Simma, “An FPGA-based Torus Communication Network,” PoS
LATTICE2010 (2010) 038

[4] This is a standard trick: see for example K. Jansen and C. Urbach, “tmLQCD: A Program suite to
simulate Wilson Twisted mass Lattice QCD,” Comput. Phys. Commun.180 (2009) 2717

[5] L. Scorzato [AuroraScience Collaboration], “AuroraScience,” PoSLATTICE2010 (2010) 039.

7

