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1. Introduction

Understanding the properties of the vacuum of gauge theories is still an interesting field, po-
tentially rich of surprises and unexpected applications.

It is well recognised today that relativistic field models can be used as effective theories to
describe the low-energy excitations in condensed matter systems; in particular, they can be applied
to a wide class of planar systems (see for example Ref. [1], part VI).

Recently much attention has been devoted to the application of the lattice approach to describe
some properties of a single sheet of carbon atoms arranged in the well known honeycomb structure
called “graphene” (among the first papers that appeared we want to remind Ref. [2] and Ref. [3]).

The vacuum structure of lattice gauge theories can be understood probing it by an external
background field~Aext. In this paper, we show that the presence of an external magnetic field
induces a dynamical symmetry breaking in the particular case of QED in 2+1 dimensions with
dynamical fermions.

We will also discuss how our results can be applied to describe some striking properties, ob-
served in experimental studies, of graphene at large external magnetic fields.

2. The magnetic field background on the lattice

The introduction of a magnetic background can be done defining on the latticea gauge-
invariant effective actionΓ(~Aext) by using the Schrödinger Functional (SF) [4]. The Euclidean
SF in Yang-Mills theories without matter is defined by

Z[Af ,Ai ] = 〈Af |e−HT
P|Ai〉 , (2.1)

i.e. it is the propagation kernel for going from some field configurationAi , at timex4 = 0, to some
other configurationAf , atx4 = T; the operatorP projects onto the physical states.

The lattice SF is given byZ[U f ,U i ] =
∫

DUe−S, whereS is the Wilson action modified to
take in account the boundaries:U(x)x4=0 =U i andU(x)x4=T =U f . We define the lattice effective
action for a background field~Aext as

Γ(~Aext) =− 1
T

ln

(

Z̃[Uext]

Z̃[0]

)

, whereZ̃[Uext] = Z[Uext,Uext] . (2.2)

Remarkably, it turns out thatΓ(~Aext) is invariant under lattice gauge transformations of the external
link Uext. Since in this definitionU f =U i , we have periodic conditions in the time direction and,
due to the lack of free boundaries, the lattice action is now the familiar Wilson action.

Moreover, it is possible to show that

Γ(~Aext)→ E0(~A
ext)−E0(~0) , (whenT → ∞) , (2.3)

whereE0(~Aext) is the vacuum energy in presence of the external background field. Therefore
Γ(~Aext) is the lattice gauge-invariant effective action for the background field~Aext. In other words
to study a theory with an external background field we have to simulate on the lattice the original
action (i.e. the one without any external field), but introducing proper constraints.
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In our case we are interested inU(1) in a uniform external magnetic fieldH, therefore, after
imposing spatial and temporal boundary conditions, we have to constrain thespatial lattice links
belonging to a fixed time slice (for examplex4 = 0) to

Uext
1 (~x) = 1 , Uext

2 (~x) = cos(gHx1)+ i sin(gHx1) , (2.4)

whereg is the coupling constant. The same constraints are imposed at the spatial boundaries of the
other time slices,i.e. we require that fluctuations over the background field vanish at infinity. The
temporal links are not constrained, which is in coherence with the correctdefinition of the thermal
partition functional [5].

We can see that, since the lattice has the topology of a torus, the magnetic field turns out to be
quantized:

a2gH =
2π
Lt

next , (next = 0,1, . . .) , (2.5)

whereLt is the temporal lattice extension. A different approach to the problem we have tackled,
where also a different way to introduce the external magnetic field is implemented, can be found in
Ref. [6].

This paper is based on the study of QED withNf = 2 flavours of 4-component fermions using
the staggered fermion approach; this means that we need to simulateN = 1 staggered fermions
fieldsχ, χ̄ with the Euclidean action [7]:

S= SG+
N

∑
i=1

∑
n,k

χ i(n)Mn,kχi(k) , (2.6)

and fermion matrix given by

Mn,k[U ] = ∑
ν=1,2,3

ην(n)
2

{

[Uν(n)]δk,n+ν̂ − [U†
ν (k)]δk,n−ν̂

}

+m δn,k , (2.7)

whereην(n) = (−1)n1+...+nν−1. Moreover, we choose the compact formulation of QED,

SG[U ] = β ∑
n,µ<ν

[

1− 1
2

(

Uµν(n)+U†
µν(n)

)

]

, (2.8)

whereUµν(n) is the “plaquette variable” andβ = 1/(g2a), a being the lattice spacing.
Note that the introduction of the fermions in the theory does not change anything about the

way we introduce the external field~Aext [8].

3. Dynamical symmetry breaking

It is now a general result that a constant magnetic field leads to the generation of a fermion
dynamical mass [9] in a wide class of 2+1 and 3+1 dimensional theories; this phenomenon is
known as magnetic catalysis [10].

In the QED in three dimensions it is possible to determine, at first order in perturbation theory,
the value of the chiral condensate in presence of the magnetic fieldH (in cgs units) [11]:

〈ΨΨ〉 = −2Nf |m|c2 ℏceH
2π

∞

∑
n=1

1√
2nℏceH+m2c4

. (3.1)
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After regularisation of the integral and in the limit of small gap∆0 = mc2, we get:

〈ΨΨ〉 ≃ − h̄ceH
2π

Nf
ζ (1

2)√
π

∆0
√

ℏceH
2π

. (3.2)

4. Monte Carlo Simulations

Our simulations have been performed in the weak coupling regime withβ = 2.0, on volumes
L3, with L = 12,16,24, for masses in the range 0.005< m0 < 0.05 and for several values of the
strengths of the magnetic fieldnext, namely,next = 1,2,3. The Monte Carlo simulation code is
based on the Hybrid Monte Carlo algorithm.

From Eq. (3.2) we can point out the natural dimensionless quantities to be used in the plot of
our results:

y=
〈ΨΨ〉

eH
2π

and x=
m0
√

eH
2π

. (4.1)

In Fig. 1 we plot our data all together, regardless of possible finite volume effects that are nev-
ertheless smaller than statistical errors. We see that the continuum scaling lawis satisfied for
0 < x . 0.04. This allows us to extract the chiral condensate in the chiral limit,x → 0, by the
following linear relation:

y = a0 + a1x . (4.2)

The best fit of the data to Eq. (4.2), in the scaling region, gives

a0 = 0.07668± 0.00930 , a1 = 11.20± 0.48 . (4.3)

As a consequence, we see that in the chiral limit the external magnetic field does induce a non-zero
chiral condensate. From Eq. (4.1) and the result in Eq. (4.3), restoring cgs units, we find:

〈ΨΨ〉 =
h̄ceH
2π

(0.07668± 0.00930) . (4.4)

The non-zero value of the chiral condensate can be interpreted as the generation of a dynamical
fermion massmdyn with gap∆0 = mdync2. To extract∆0 we use Eq. (3.2) combined with Eq. (4.4):

∆0 ≃ −
√

π
Nf ζ (1

2)

√

ℏceH
2π

(0.07668± 0.00930) . (4.5)

5. Application to graphene

The graphene is a single sheet of carbon atoms characterised by a honeycomb lattice described
by two interpenetrating triangular Bravais lattices. The unit cell is instead a rhombus containing
two carbon atoms. The reciprocal lattice comes out to be a hexagonal as well but, between the six
corners of the Brillouin zone, only two points are inequivalent (i.e. not connected by a reciprocal
lattice vector) and are labelled byK andK′, called “valleys”.

A simple tight-binding model [12] shows that the dispersion relationE(k) goes to zero atK and
K′. Everywhere else in momentum spaceE(k) 6= 0 and we have two graphene bands, conduction
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Figure 1: Scaled chiral condensate versus the scaling variablex. The continuum line is the linear fit of the
data in the scaling region 0< x. 0.04.

and valence, lying symmetrically above and below the Fermi energy atE = 0. Therefore, the Fermi
level is placed between the two symmetrical bands, with zero excitation energyneeded to excite an
electron from just below the Fermi energy to just above the six points of the corners of the Brillouin
zone.

Moreover, the dispersion relation turns out to be linear near theK and K′ points: E(k) =
±ℏvF |k|, wherevF is the Fermi velocity. As discussed in Ref. [13], this yields an effective Hamil-
tonian made of two copies of Pauli spinors which satisfy the massless two-dimensional Dirac equa-
tion with the speed of light replaced by the Fermi velocity.

When graphene is immersed in a transverse magnetic fieldH the energy levels are quantised
into non-equidistant Landau levels:

En = sign(n)

√

2ℏeH|n|v
2
F

c
, n= 0,±1, . . . . (5.1)

The presence of the “anomalous” Landau level at zero energy leads tohalf-integer Quantum Hall
(QH) effect; the Hall resistance is given byRxy = h/(e2ν), where the quantised filling factorν is:

ν =±gs(N+
1
2
) =±2,±6,±10, . . . . (5.2)
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The factorgs = 4 takes into account the spin and valley degeneracy and± stands for electron and
holes, respectively.

Recently, it has been shown [14] that for very strong magnetic field (H & 20T) new QH states
appear corresponding toν = 0,±1,±4. This means that then= 0 Landau level is totally resolved
into ν = 0,±1 plateaus, while the fourfold degeneracy in then=±1 Landau levels is only partially
resolved intoν =±4 leaving a twofold degeneracy [14].

The new plateaus atν = 0,±4 can be explained by Zeeman spin splitting;ν = ±1 can be
explained if there is some kind of generation of a gap∆0, i.e. a valley symmetry breaking inn= 0
Landau level [14, 15].

In Ref. [15] the authors determine experimentally the∆E(ν = 1) dependence from the mag-
netic field: they find for it a

√
H behaviour.

We have fitted the experimental data from Ref. [15] to

∆E(ν = 1) = 2
(

∆0(H) − g
2

µBH
)

, (5.3)

whereµB is the Bohr magneton,g = 2 and∆0(H) ∼
√

H (note that the second term takes into
account the Zeeman effect); we find:

∆0(H) = (13.57±0.28) K×kB

√

H(T) , (5.4)

wherekB is the Boltzmann factor andH(T) stands for the magnetic field expressed in Tesla.
It is believed that the generation of the gap is driven by the electron-electron interaction (for a

review see Ref. [16]); in this picture, the value of the gap is expected to beof the order:

∆0(H)≈ e2

ε

√

eH
ℏc

≈ 163K×kB

√

H(T) , (5.5)

i.e. this result is one order of magnitude bigger than the experimental result of Eq. (5.4).
On the other hand, in Ref. [11] it is supported that the origin of the gap is related to adynamical

generation related to the presence of the magnetic field; this means that we canderive the value of
the gap by our numerical results.

The implied hypothesis here is that the Coulomb interaction between the electronscan be
neglected because the dominant effect is the magnetic catalysis; this is the reason why we can apply
planar QED directly to describe the graphene, although in the literature the Coulomb interaction is
always considered as a 3d field acting on 2d fermions.

To apply our results to graphene, we must simply replace the speed of lightc with the Fermi
velocityvF in Eq. (4.5) [11]:

∆0 ≃ −
√

π
Nf ζ (1

2)

√

ℏ
v2

F
c eH

2π
(0.07668± 0.00930) . (5.6)

It is worth mentioning that the small gap approximation, which we are using here, is correct
when it is satisfied the following relation:

∆0
√

H(T)
≪

√

2ℏv2
Fe/c≈ 420K×kB ; (5.7)
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the experimental value found in Eq. (5.4) is actually small compared with that in Eq. (5.7), therefore
we can consider the small gap approximation valid in this context.

Finally, using the experimental value for the Fermi velocity (vF ≈ 1.0×108cm/s) in Eq. (5.6),
we get :

∆0(H) = (5.52±0.67) K×kB

√

H(T) . (5.8)

This result can be compared directly with Eq. (5.4). Since the two values areof the same order of
magnitude, our result also confirm our hypothesis that the Coulomb interaction between electrons
is actually negligible in presence of an external magnetic field.

6. Conclusion

Our nonperturbative Monte Carlo simulations have shown that the externalmagnetic field
gives rise to a spontaneous breaking of the chiral symmetry. We think that itis possible to apply
our results to describe the breaking of the valley symmetry in graphene under strong magnetic field
and we determine the numerical value of the gap that compares quite well with theexperimental
value.
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