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1. Introduction

Understanding the properties of the vacuum of gauge theories is still anshigy field, po-
tentially rich of surprises and unexpected applications.

It is well recognised today that relativistic field models can be used astigéetheories to
describe the low-energy excitations in condensed matter systems; in pastiveyecan be applied
to a wide class of planar systems (see for example Ref. [1], part V).

Recently much attention has been devoted to the application of the lattice dppralescribe
some properties of a single sheet of carbon atoms arranged in the weh kemeycomb structure
called “graphene” (among the first papers that appeared we wanhtod&®ef. [2] and Ref.[]3]).

The vacuum structure of lattice gauge theories can be understood giiblbiy an external
background fieldd®*t. In this paper, we show that the presence of an external magnetic field
induces a dynamical symmetry breaking in the particular case of QEDtith @imensions with
dynamical fermions.

We will also discuss how our results can be applied to describe some strikipgrgies, ob-
served in experimental studies, of graphene at large external magaletsc fi

2. The magnetic field background on the lattice

The introduction of a magnetic background can be done defining on the lattizrige-
invariant effective actiorf(A'e’“) by using the Schrédinger Functional (SE) [4]. The Euclidean
SF in Yang-Mills theories without matter is defined by

ZIAT AT = (ATe HT2|A) (2.1)

i.e. it is the propagation kernel for going from some field configurafigrat timex,; = 0, to some
other configuratior\f, atx, = T; the operator? projects onto the physical states.

The lattice SF is given bgZ[Uf,U'] = [DUe S, whereSis the Wilson action modified to
take in account the boundarids(x)y,—o = U' andU (X)y,—1 = U . We define the lattice effective
action for a background field®*t as

Aext 1 Z[U ext] 11 1€X ext | jex
FA®Y) = —ZIn | == ., whereZ[U®Y = z[U® U (2.2)
T Z[0]
Remarkably, it turns out thﬁt(ﬂe"t) is invariant under lattice gauge transformations of the external
link U® Since in this definitiotJ f = U', we have periodic conditions in the time direction and,
due to the lack of free boundaries, the lattice action is now the familiar Wilsomactio
Moreover, it is possible to show that

I—(A'ext) N EO(A’eXt) _ Eo(a) , (WhenT — oo) , (2.3)

where EO(AE’“) is the vacuum energy in presence of the external background fieléreftine
F(A‘EX‘) is the lattice gauge-invariant effective action for the background A8 In other words
to study a theory with an external background field we have to simulate onttice ke original
action {.e. the one without any external field), but introducing proper constraints.
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In our case we are interestedU{1) in a uniform external magnetic field, therefore, after
imposing spatial and temporal boundary conditions, we have to constragpdtial lattice links
belonging to a fixed time slice (for exampig= 0) to

UPNR) =1, USYX) =cos(gHx)+isin(gHx) , (2.4)

whereg is the coupling constant. The same constraints are imposed at the spati@hbesiof the
other time slicesi.e. we require that fluctuations over the background field vanish at infintig. T
temporal links are not constrained, which is in coherence with the catedicition of the thermal
partition functional [p].

We can see that, since the lattice has the topology of a torus, the magnetic fisldutito be
guantized:

211
a’gH = Enex“ (Next=0,1,...), (2.5)

wherel; is the temporal lattice extension. A different approach to the problem we taakled,
where also a different way to introduce the external magnetic field is impletherae be found in
Ref. [6].

This paper is based on the study of QED with= 2 flavours of 4-component fermions using
the staggered fermion approach; this means that we need to simuiate staggered fermions
fields x, x with the Euclidean actior{][7]:

S= S+ 3 T XM (9. 2.6
and fermion matrix given by |
U R R (LR VLS FLLLYS @7)
wheren, (n) = (—1)™**™-1_Moreover, we choose the compact formulation of QED,
V)= 3 |15 Ui +ULm)] 28)

whereU,,, (n) is the “plaguette variable” anfl = 1/(g?a), a being the lattice spacing.
Note that the introduction of the fermions in the theory does not changeiagybout the
way we introduce the external fieRfxt [l

3. Dynamical symmetry breaking

It is now a general result that a constant magnetic field leads to the ¢gjenevha fermion
dynamical masq]9] in a wide class oft2l and 3+ 1 dimensional theories; this phenomenon is
known as magnetic catalysis [10].

In the QED in three dimensions it is possible to determine, at first order inrpation theory,
the value of the chiral condensate in presence of the magnetid¢fighicgs units) [I]L]:

ceH 2 1

- h
PYY) = —2Ng |m|c? .
() L 2n n; 2nficeH+ méc?

(3.1)
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After regularisation of the integral and in the limit of small gap= mc, we get:

_ _ hceH (3) Do

(P¥) = ——— f\/ﬁ\/hgﬁ- (3.2)

4. Monte Carlo Simulations

Our simulations have been performed in the weak coupling regime@nt2.0, on volumes
L3, with L = 12,16, 24, for masses in the range005 < my < 0.05 and for several values of the
strengths of the magnetic fielt,y;, namely,next = 1,2,3. The Monte Carlo simulation code is
based on the Hybrid Monte Carlo algorithm.

From Eq. [3) we can point out the natural dimensionless quantities tcebeirughe plot of
our results:

y:<lquJ> and x= Mo

In Fig. [d we plot our data all together, regardless of possible finite volufeete that are nev-
ertheless smaller than statistical errors. We see that the continuum scalirig $aisfied for
0 < x<0.04. This allows us to extract the chiral condensate in the chiral lxnit; O, by the
following linear relation:

(4.1)

y = a0+ aiX. (4.2)
The best fit of the data to Eq. (}.2), in the scaling region, gives

ap = 0.07668+ 0.00930, a; = 11204+ 0.48. (4.3)

As a consequence, we see that in the chiral limit the external magnetic feddratbuce a non-zero
chiral condensate. From Eq. (4.1) and the result in Eq] (4.3), regtogs units, we find:

. FceH
(@w) = =27 (0.07668+ 0.00930 (4.4)

The non-zero value of the chiral condensate can be interpreted asrbeaton of a dynamical
fermion massngyn With gapAg = mgync?. To extractdo we use Eq.[(3}2) combined with Ed. (4.4):

H
Ao ~ — VT %M 17668+ 0.00930 . (4.5)

NeZ(3)V 2m
5. Application to graphene

The graphene is a single sheet of carbon atoms characterised byyatoidattice described
by two interpenetrating triangular Bravais lattices. The unit cell is insteadmlibis containing
two carbon atoms. The reciprocal lattice comes out to be a hexagonalldmitybetween the six
corners of the Brillouin zone, only two points are inequivalemt (ot connected by a reciprocal
lattice vector) and are labelled yandK’, called “valleys”.

A simple tight-binding model[[J2] shows that the dispersion relai¢k) goes to zero & and
K’. Everywhere else in momentum spdegk) # 0 and we have two graphene bands, conduction
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Figure 1: Scaled chiral condensate versus the scaling vardablde continuum line is the linear fit of the
data in the scaling regionQ x < 0.04.

and valence, lying symmetrically above and below the Fermi enelgy=ad. Therefore, the Fermi
level is placed between the two symmetrical bands, with zero excitation emeegled to excite an
electron from just below the Fermi energy to just above the six points ofttmeecs of the Brillouin
zone.

Moreover, the dispersion relation turns out to be linear neakKtlend K’ points: E(k) =
+7hve k|, whereve is the Fermi velocity. As discussed in Rdf.][13], this yields an effectivnita
tonian made of two copies of Pauli spinors which satisfy the massless two-lonahDirac equa-
tion with the speed of light replaced by the Fermi velocity.

When graphene is immersed in a transverse magneticHidlte energy levels are quantised
into non-equidistant Landau levels:

2
i

En = sign(n)y/ 2heH|n| o n=0,+1,.... (5.1)

The presence of the “anomalous” Landau level at zero energy ledmddftmteger Quantum Hall
(QH) effect; the Hall resistance is given By, = h/(€?v), where the quantised filling factoris:

1
v=dgs(N+3) = +2,46,+10..... . (5.2)
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The factorgs = 4 takes into account the spin and valley degeneracydasthnds for electron and
holes, respectively.

Recently, it has been shown [14] that for very strong magnetic fi¢lg 0T) new QH states
appear corresponding to= 0,+1, +4. This means that the= 0 Landau level is totally resolved
intov =0, +1 plateaus, while the fourfold degeneracy inthe +1 Landau levels is only partially
resolved intov = +4 leaving a twofold degeneracly ]14].

The new plateaus at = 0,4+4 can be explained by Zeeman spin splitting= +1 can be
explained if there is some kind of generation of a dgpi.e. a valley symmetry breaking in=0
Landau level [T4] 35].

In Ref. [13] the authors determine experimentally #t&(v = 1) dependence from the mag-
netic field: they find for it a/H behaviour.

We have fitted the experimental data from REf] [15] to

DE(v=1) =2 (Bo(H) - gus H) . (5.3)

where g is the Bohr magnetorg = 2 andAq(H) ~ +/H (note that the second term takes into
account the Zeeman effect); we find:

Do(H) = (1357+0.28) K x kg /H(T) (5.4)

wherekg is the Boltzmann factor anld (T ) stands for the magnetic field expressed in Tesla.
It is believed that the generation of the gap is driven by the electron-eteictieraction (for a
review see Ref[[16]); in this picture, the value of the gap is expected ¢ the order:

€ [oH

Bo(H) ~ —/ = ~ 16, x ka/H(T) (5.5)

i.e. this result is one order of magnitude bigger than the experimental result 6 B).

On the other hand, in Ref.JIL1] it is supported that the origin of the gajteitetto adynamical
generation related to the presence of the magnetic field; this means that derivathe value of
the gap by our numerical results.

The implied hypothesis here is that the Coulomb interaction between the electorize
neglected because the dominant effect is the magnetic catalysis; this istbe wday we can apply
planar QED directly to describe the graphene, although in the literature tilerGl interaction is
always considered as @ 3eld acting on & fermions.

To apply our results to graphene, we must simply replace the speed o€ hgtit the Fermi

velocity ve in Eq. (4.5) [11]:

v2
| h-EeH
Ny ~ — \/ﬁl ¢ (0.07668+ 0.00930 . (5.6)
NfZ(Q) 2r

It is worth mentioning that the small gap approximation, which we are using tsecerrect
when it is satisfied the following relation:

AO 2 ~ .
\/W < y/2hvge/c~ 420K x kg ; (5.7)
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the experimental value found in E{. (5.4) is actually small compared with that ifoH), therefore
we can consider the small gap approximation valid in this context.

Finally, using the experimental value for the Fermi velocity £ 1.0 x 10cm/s) in Eq. [5.6),
we get :

Do(H) = (5.52+£0.67) K x kg /H(T) . (5.8)

This result can be compared directly with Efg. [5.4). Since the two valuesf #ne same order of
magnitude, our result also confirm our hypothesis that the Coulomb interdstioveen electrons
is actually negligible in presence of an external magnetic field.

6. Conclusion

Our nonperturbative Monte Carlo simulations have shown that the exteraghetic field
gives rise to a spontaneous breaking of the chiral symmetry. We think tisgbdssible to apply
our results to describe the breaking of the valley symmetry in graphene stnoieg magnetic field
and we determine the numerical value of the gap that compares quite well wigxgeemental
value.
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