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We present direct representations of the scaling functiéitise 3 O(4) model which are rele-
vant for comparisons to other models, in particular QCD sTitidone in terms of expansions in
the scaling variable = t_/hl/ﬁ‘s. The expansions arourzd= 0 and the corresponding asymptotic
ones forz — +o overlap such that no interpolation is needed. We expligtlysent the expan-
sion coefficients which have been determined numericadijnfdata of a previous high statistics
simulation of theO(4) model on a three-dimensional lattice of linear extendica 120. This
allows to derive smooth representations of the first threwalé/es of the scaling function of the
free energy density, which determine universal propedfasp to sixth order cumulants of net
charge fluctuations in QCD.
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1. Introduction

We provide representations of the scaling functions of tireg-dimensionaD(4) model
which can be used in tests of other models on their membedsltiie corresponding universality
class. Contrary to the often analyzed scaling function efdider parameter, the so-called mag-
netic equation of state, our main interest here is to det@rdirectly the scaling function of the
free energy density and its derivatives. This is especidlliynportance for applications to quantum
chromodynamics (QCD) with two degenerate light-quark fianat finite temperature. Two-flavor
QCD is believed [1]-[6] to belong to the 30(4) universality class at its chiral transition in the
continuum limit. In the vicinity of the chiral phase transit temperature the reduced temperature
variable in QCD also depends quadratically on the quark atemotential. Derivatives of the
singular part of the free energy density of QCD with respeatitemical potential, which define
cumulants of fluctuations of net quark number, thus are obdett by scaling functions that are
given by derivatives of the scaling function of the free gyedensity in a three-dimension@i(4)
model.

Obtaining explicit parametrizations of higher order datives of the scaling functions of the
free energy density became of interest recently as thebehayder derivatives control the scaling
behavior of fluctuations of conserved charges, e.g. theargbh number [7]. These quantities are
currently measured at RHIC [8] and will also be measured avipéon experiments at the LHC.

2. Thethree dimensional O(4) model

The specific model which we study here is the standafd)-invariant nonlinearg-model,

which is defined by
B%:_JZ@'@_H'Z@’ (2.1)
<Xy> X

wherex andy are nearest-neighbor sites on a three-dimensional hyiiertattice, andg is a
four-component unit vector at si#e The couplingd and the external magnetic fieftiare reduced
quantities, that is they contain already a fagor 1/T. In fact, we consider in the following the
coupling directly as the inverse temperatules 1/T. The partition function is then

Z(T,H) = /Hol“q;z 3(@? —1)exp(—B ) . (2.2)
%
We introduce the order parameddras the derivative of the free energy densftyT,H) = —\% InZ,

with respect to the magnitude of the external magnetic field H&,,

of
oH
wheregl is the field component parallel to the magnetic fieild
In the vicinity of the critical point the free energy densibay be splitted into a singular (non-
analytic) (fs) and a non-singularf(s) part,

f(T,H) = f5(T,H) + fns(T) . (2.4)
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The singular part is a homogeneous function of the variabteéd /Ho and the reduced temperature
t = (T — Tc)/To, whereHy and Ty set the scale in the critical region. The singular part may be
expressed in terms of a universal scaling functfenwhich itself only depends on the scaling
variablez=1t/h/2, i.e.,

fs = Hoh™™ Y% (2) . (2.5)

Here we have introduced the gap exponént 30, which is given in terms of the more commonly
used critical exponent8 andd. The latter define the scaling properties of the order patemnas
function of temperature &= 0 and as function of the external fieldtat O, respectively. Eq. 2.5
establishes the relation between the universal scalingtibmof the order parametefd) and the
scaling function of the free energy densiti¢ ). Using Eq. 2.3 we find

M = h%fs(2) (2.6)

fo(2) = — <1+ %) f(2) + E f(2). 2.7)

In the following we will exploit the differential equatiolgqg. 2.7, to determine the scaling function
ft(z) from fg(2).

3. Scaling functions of the free energy density and the order parameter

As the universal scaling functions of the free energy dgnéit(z), and the order parameter,
fc(2), are related through the differential equation, Eq. 2.& kinowledge offg(2) is sufficient to
determineft (z). We summarize in the following the relevant relations thetedminef¢(z), once a
suitable parametrization d§(z) is known. Further details are given in Ref. [9].

We consider a parametrization &(z) by introducing three series expansions that are valid
for smallzand in the asymptotic regiorzs— +, respectively,

> o obnZ" , z small
fo(z) =<z S gdiz 28 ,Z— +0 (3.1)
(2P - Yhoth (-2 ™%z —o

The corresponding parametrization for the scaling fumctibthe free energy density is then
given by,
> oo anZ" , z small
(2= {7 CnoGz ™™ , Z— oo (32)

(-2 YnoG (-T2 Lz —e

The relation between the expansion coefficients in thesegj@esentations fdg and f; are easily
obtained by using the differential equation, Eq. 2.7, andgaring coefficients fon > 0,

Aby Lo edy 33

= e n—2 1T ontn 0 2T Thia
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bo b1 07} bs
1 | —0.3166125+-0.000534 | —0.04112553+0.001290| 0.00384019E 0.000667
by by b
0.006705475:-0.001704| 0.0047342+£0.001429 | —0.0019312674 0.000312
by b b
0.007100450Q:0.000160| 0.0023729f 0.000095 0.000272312:0.000021

Table 1: Coefficients of the smalt-expansion of the scaling functiof;(z) of the order parameter. For
n > 4 we give different expansion coefficients for negative aositive z-values.

andc; = 0. This leaves the coefficientg still undetermined. They can be obtained as
A7 _
& = 5og [ YRl - 0 -yEO) (3.4)

B 0
G = 5 | AT ) - 160 -y (3.5)

Here a is the specific heat critical exponent, which is negativehia three dimensionaD(4)
universality class.

The coefficientsy, for all nandc,, for n> 0, are obtained from a parametrization of the scaling
function of the order parameter. The relevant expansioffficiemts by, by and d= have been
obtained from numerical data for the order parameter itslivell as its susceptibility [9]. In this
step one explicitly makes use of a set of values for critiggb@ents in the three dimensional O(4)
universality class. We use. = 0.380 and d = 4.824. All other critical exponents can be derived
using hyperscaling relations. E.g., the specific heat espbis given bya = —0.213. We list the
resulting expansion coefficients in Table 1 and 2. Note tleagive different expansion coefficients
b~ andby;, for n > 4 to better reproduce the asymmetric form of the scalingtfand(z) also for
small values o with only a small number of expansion coefficients. The g&pomding scaling
function of the order parameter and its first derivative mvahin Fig. 1.

Having at hand a parametrization ff(z) we finally can determine the remaining coefficients
cg, which complete the parametrization @i z). These expansion coefficients are listed in Table 3.

dy dy d;
110599+ 0.00555 | —1.31829+0.1087 | 15884+ 0.4646
do dy d,
1 0273651+ 0.002933| 0.0036058+ 0.004875

Table 2: Coefficients for the asymptotic series expansionsgfz) in the region of large positive and
negativez-values, respectively.
4. Discussion and Conclusions

The availability of high accuracy numerical data on the omlrameter and its susceptibility
in a three dimensionalD(4) symmetric spin model allowed us to extract the underlyinglisg



Universal properties of 3d O(4) symmetric models Frithjof Karsch

4
2 . #Xy &
fo(z)
| ‘
t 3+ e
X
1 7
X
A X
N i
0
X
-1/A
z=thV :
1 1 1 1 1 1
-3 -2 -1 0 1 2 3

Figurel: The scaling function of the order parameter (left) and itsvddive (right).
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Figure2: The scaling function of the free energy density and its fireté derivatives.
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G G
0.422059886+ 0.010595 | 0.229176194+ 0.010669

Table 3: The leading expansion coefficients for the singular parhefftee energy density.

function of the free energy density and its first three déives. As the specific heat exponenis
negative in the 3@(4) universality class, it is only the third derivative with pest to temperature,
which diverges at the critical point. The correspondindisgafunction f{”(z) has two extrema; a
rather shallow minimum in the symmetry broken phase and agumeced maximum in the sym-
metric phase. The latter is locatedzif ~ 1.45. This happens to be close to the location of the
peak in the susceptibility of the order paramel%?, = 1.374(3).

The higher order derivatives of the scaling function of tteefenergy density play a central
role in the discussion of fluctuations of conserved charge@CD, e.g. the singular behavior of
the 2r-th order cumulant of net baryon number fluctuations is eelab then-th derivative off; (z).
The change of sign of{”(z) and its pronounced maximum characterize the QCD transitiofact,
the change of sign of{’(z) suggests that 6th order cumulants of net baryon number gegive
in the vicinity of the QCD transition line. This may be detgde in a heavy ion collision, if the
production of hadrons (freeze-out) occurs at tempera@mmedsbaryon chemical potentials that are
close to the QCD crossover transition line.
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