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We present a new variant of a Krylov space algorithm for finding the eigenpairs of a large her-
mitean matrix where the eigenvalues lie in a specified low density part of the spectrum. The
method uses selective re-orthogonalization and re-starting to find each eigenpair once. We present
theoretical bounds on the convergence rate, and show that these work well in practice for the her-
mitean Wilson Dirac operator. We have implemented the method in Chroma, and we show that it
is significantly faster than the Ritz method currently available.
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1. Introduction

We have developed a new algorithm based on the LANSO method of Parlett and Scott [1] for
finding eigenpairs of a Hermitean matrix A near large voids in its spectrum, and we have imple-
mented it in Chroma [2]. Such an eigensolver is useful for low-mode averaging, accelerating the
application of rational approximations to the overlap operator, and for many other applications. We
also provide a theoretical analysis leading to bounds that explain the rapid convergence of eigen-
values near large voids in the spectrum, or more generally in regions of low spectral density, and
show that these bounds are applicable in practice for the QCD Wilson–Dirac operator.

2. The Algorithm

For an n×n Hermitean matrix A an orthonormal basis for the Krylov subspace

K j(A,q) = span(q,Aq,A2q,A3q, . . . ,A j−1q)

may be built iteratively from a starting vector q using Gram–Schmidt orthonormalization. In this
basis A itself is Hessenberg, in fact as A is Hermitean it has a tridiagonal form T; thus K can be
constructed using a three-term recurrence rather than orthogonalizing with respect to all previous
Krylov vectors,

Aq j = β jq j+1 +α jq j +β j−1q j−1,

where α and β are the diagonal and off-diagonal elements of T.
From time-to-time we partially diagonalize T using the QR method with suitably chosen shifts

in order to find the Ritz pairs of A. The Ritz pairs are the eigenpairs of the tridiagonal matrix T

restricted to the Krylov subspace. The MaxMin theorem shows that extremal eigenvalues of A are
approximated by the extremal Ritz values.

A well-known problem is that although the implicit orthogonality saves us a lot of work it is
soon spoiled by rounding errors leading to spurious copies of eigenvalues. Specifically, eigenvalues
which have converged reappear as they are not being explicitly suppressed by reorthogonalization.
We therefore orthogonalize with respect to those converged eigenvectors that are within the part of
the spectrum that we are interested in.
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Figure 1: Timing comparisons of the Ritz method and our Lánczos method for the Wilson–Dirac operator
on a typical 243×48 lattice. A range of different tolerances for the residual norm ||(A−θ)y‖ are presented
for the Ritz method. In the Lánczos case the accuracy of all the eigenpairs increases with the number of
iterations, and is always at least as good as the best Ritz values for the same number of iterations.

We use the following three-term recurrence relation

y ·qn+1 ≤ τn+1 =
max
θ∈Σ

|θ −αn|τn + |βn−1|τn−1

|βn|

where the Ritz vector y belongs to a Ritz value θ lying in that part of the spectrum Σ in which we are
interested. This indicates when we need to reorthogonalize: in practice such reorthogonalization is
the most costly part of the calculation.

This idea is based on the LANSO algorithm [1] but as we are only interested in part of the
spectrum we only maintain orthogonality with respect to eigenvectors belonging to that part.

We have implemented our algorithm in Chroma [2], and the results of our comparison of it
with the Chroma implementation of the Ritz method [3] which requires explicit Gram–Schmidt
orthogonalization are shown in Figure 1.

The other well-known problem with the Lánczos algorithm is that in exact arithmetic we only
get one eigenvector from each degenerate eigenspace. However, with finite precision all eigenvec-
tors will eventually grow out of rounding errors. Nevertheless it is often advantageous to restart
with a starting vector orthogonal to all good eigenvectors as this limits the size of the Krylov space.

3. Theoretical Bounds

We are interested in eigenvalues near to a large void in the spectrum. Such eigenvalues are the
largest eigenvalues of a shifted-and-squared matrix A′ = −(A−Λ)2 whose Krylov subspace K ′

is contained in that for the original matrix A with the same number of applications of A. We have
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Figure 2: Convergence of the Ritz values θ to the eigenvalues λ for the Wilson–Dirac operator on a typical
243×48 lattice. The lines show our generalisation of the Kaniel–Paige–Saad bounds. Note the appearance
of orthogonal nearly degenerate eigenvectors from rounding errors.

extended the Kaniel–Paige–Saad [4, 5] analysis for near-extremal eigenvalues to the case of Ritz
pairs in low density regions by showing that the bounds on the convergence of the near-extremal
eigenpairs of A′ in K ′ lead to useful bounds on their convergence in K . Indeed, the bounds
corresponding to the best possible choices for the shift Λ hold without our having to know the
values of Λ explicitly. The details of this will be given elsewhere [6]. Figure 2 shows that these
bounds can be fairly tight.
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