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We investigate the QCD phase diagram as a function of isospin chemical potential at a fixed
temperature by directly putting large numbers of π+s into the system. Correlation functions of
N π+-systems involves N!N! contractions, and become extremely expensive when N is large.
In order to alleviate this problem, a recursion relation of correlation functions has been derived
in Ref. [1] that substantially reduces the number of independent contractions needed and makes
the study of many pions systems be possible. In this proceeding this method is investigated
numerically. We have also constructed a new method that is even more efficient, enabling us to
study systems of up to 72 π+’s.
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1. Introduction

The QCD phase diagram has been studied with many methods, but there are still many ques-
tions waiting to be answered. At zero isospin density, there is a crossover (phase transition) from
a confinement phase at low temperature to a decomfinement phase at higher temperature. From
chiral perturbation theory (χPT), we expect that when the isospin chemical potential reaches the
mass of a single pion, pions start to condense, and at higher isospin chemical potential there might
be a crossover or a phase transition to another state [2]. Systems containing up to 12 π+s have been
studied by directly computing the required contractions in Ref. [5] [3], finding agreement with the
expectations from χPT. In order to put more π+s into the system, a second source is required be-
cause of the Pauli principle, and studying systems of more than 12 π+ becomes almost impossible
by directly computing all possible contractions.

In Ref. [1], a recursion relation of correlation functions of n-π+ systems is constructed which
significantly reduces the amount of work needed, enabling us to study systems up to 24 π+’s.
Recursion relations of M species systems have also been discussed in the same paper. Even with
the recursion relation, studying a 3-source system (36 pions) still consumes a substantial amount of
time. In order to overcome this problem we have constructed a new method which allows practical
calculation of up to 72π+s.

In this proceeding, we first review the methodology of the recursion relation in position space
and then extend its application to momentum space, after that we present studies of systems con-
taining up to 24π+s by applying the recursion relation in momentum space. At last we present
results from the new method to study large number of pion systems.

2. Methodology of the recursion relation

2.1 Recursion relation in position space

In order to explore systems containing up to 12M π+’s, M different sources are required be-
cause of the Pauli principle. A correlation function of a system with ni-π+s in the ith source is:

C(n1π
+
1 ,..., nmπ

+
m )(t) =

〈 (
∑
x

π
+(x, t)

)n(
π
−(y1,0)

)n1

...

(
π
−(ym,0)

)nm
〉

, (2.1)

where n̄ = ∑
m
i=1 ni. Calculating this correlation function according to Wick’s theorem involves

n̄!n̄! contractions, which make the study for a system of large number of π+’s extremely time
consuming. However the recursion relation of uncontracted correlation functions Q(n1,n2,...,nm)(t),
makes the study of such systems feasible. The correlation function can be expanded as:

C(n1π
+
1 ,..., nmπ

+
m )(t) = (−)n

(
∏

i
ni!

)
〈 Q(n1,n2,...,nm)(t) 〉 , (2.2)

where〈 〉 denotes spin color trace, and Q(n1,n2,...,nm)(t) satisfies the following ascending recursion
relation:

Q(n1+1,n2,...,nm) = 〈 Q(n1,n2,...,nm)〉 P1 − n Q(n1,n2,...,nm)P1

... + 〈 Q(n1+1,n2,...nk−1,...,nm)〉 Pk − n Q(n1+1,n2,...nk−1,...,nm)Pk

... + 〈 Q(n1+1,n2,...,nm−1)〉 Pm − n Q(n1+1,n2,...,nm−1)Pm , (2.3)
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and the initial conditions are Q(1,0,...,0) = P1 = A1,Q(0,1,...,0) = P2 = A2, · · · , where Ai’s are uncon-
tracted single pion correlators. Descending recursion relations can also be derived:

Qn =
M

∑
k=1

1
N +1− n̄

〈Qn+1k A
−1 (Pk ·A−1)〉 · IN−Qn+1k A

−1 (Pk ·A−1) (2.4)

where n = (n1,n2, · · · ,nm), 1k = (0,0, · · · ,1,0, · · ·) with only the kth nonvanishing unit element,
and Q12,...,12, Pk and A are constructed in the following way:

Q12,...,12 = (N−1)!det(A) · IN

Pk =



0 0 0 0
... . . . . . . . . .

Ak1(t) Ak2(t) . . . AkM
... . . . . . . . . .

0 0 0 0


A =



A11(t) A12(t) . . . A1M
... . . . . . . . . .

Ak1(t) Ak2(t) . . . AkM
... . . . . . . . . .

AM1(t) AM2(t) . . . AMM


(2.5)

where Ai, j(t) is defined as Ai, j (t) = ∑x S (xi,x)S+ (x j,x).
One way to construct Ai, j is shown in the left plot of Fig. 1. Correlation functions of two

species from multiple sources have similar recursion relations, for detail discussion about the re-
cursion relations see Ref. [1].

2.2 The recursion relation in momentum space

A correlation function of a system having n1-π+s in the first source and n2-π+s in another
source with total momentum n1p f1 +n2p f2 is:

Cn1π+,n2π+ (t) =

〈
2

∏
i=1

(
∑

xi,x′i
e−i(pi

1xi−pi
2x′i)u(xi, t)γ5d (x′i, t)

)ni

·
n

∏
j=1

(
∑
y j

eip f j y j d (y j,0)γ5u(y j,0)

)〉
where n = n1 + n2. Momentum conservation requires that n1p1

1 + n2p2
1− n1p1

2− n2p2
2 = ∑

n
j=1 p f j

must be satisfied to get non-vanishing Cn1π+,n2π+ . Each choice of pi
j, i, j = 1,2 satisfying this

relation is a separate measurement. By replacing propagators in position space by propagators in
momentum space, a similar recursion relation still holds. The only difference is the construction
of uncontracted correlation functions Ai, j defined as Ai, j (t) = ∑p S

(
p1

i ,p
)

S+
(

p2
j ,p−p f j

)
, which

are compared on Fig. 1.

3. Results

Because of the finiteness of the temporal extent and the factorisable nature of the multi-hadron
systems being constructed, thermal effects are particularly important in multi-hadron systems and
the correlation functions assume the form:

Cnπ+ (t) =
n

∑
m=0

(
n
m

)
Zn

me−(Em+En−m)T/2 cosh((Em−En−m) · (t−T/2))+ · · · (3.1)

where dots represent higher excitations, T is the temporal extent and En is the energy of a rest
system of n-π+s. The ground state comes from all π+’s propagating in the same direction in time,
and thermal states are from some π+’s propagating in one direction while the rest propagate in the
opposite direction.
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Figure 1: The left figure shows how to construct uncontracted correlators in spatial space and the right figure
shows how to get its counterparts in momentum space. Ai, j is constructed by following the line from source
i to x(p), returning to source j, multiplying the S(S†) with respect to each line and summing over x(p).

3.1 Verify the dispersion relationship

Calculations have been performed using anisotropic {163,203,243}×128 lattices with anisotropy
ξ = 3.5 at a quark mass corresponding to a mπ = 390Mev. On the lattice, only discrete momentum
2π

L n are allowed. Emπ+ of systems with total momentum pt =m ·p, for p=(0,0,1),(0,1,1),(0,0,2),

have been extracted for m = 4,3,2 respectively and are fitted into the dispersion relation: E2(m,pt)
m2 −

( c·pt
m )2 = E2(m,0)

m2 , where pt = m ·p returning |c| = 1.015(32), which confirms that these many
hadron systems are describable in special relativity (thermal states would have a different dependence).

3.2 One species from single source

For notational convenience, in the following p1
1 is denoted as p1, p1

2 as p2, p2
1 as p3 and p2

2 as p4.
Azimuthal symmetry ensures many combinations of p1, p2 be separate measurements of the same
physics, which provide more statistics. As Enπ+ extracted from different choices of p1 and p2 agree
with each other within errors, we choose p1 = p2 =(1,1,1) for further discussions. Extracting Enπ+

by fitting to functions with and without one excited state in addition to the thermal states discussed
above from different time intervals produces consistent results, as is shown in Fig. 2.

Decomposing Cnπ+(t) into different contributions gives insight into how much each state in
Eq. 3.1 contributes. In Fig. 2, C12π+(t) is shown. In this figure, the green line is from the first
excited state, the blue one is the ground state and other lines are thermal states. It is remarkable
that the zero temperature ground state is not dominant in any region of this correlator. Even for
C12π+(t) the ground state is strongly contaminated by both thermal states and excited states, and it
becomes difficult to extract the ground state energy from Cnπ+(t), n > 12, with the temporal extent
of these configurations.

3.3 One species from two sources

By choosing p1 = p2, p3 = p4 but p1 6= p3 correlation functions of systems having up to 24π+

have been computed with the same recursion relation, but Enπ+ is hard to extract for n > 12. As
there are more ways to construct a n-π+ system, the recursion relation forces us to calculate all
Qn1π+,n2π+ for all pairs n1,n2 = 1 · · ·12, before getting to Q12π+,12π+ , which costs O(100) times
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Figure 2: The left panel shows energies of a rest system of n-π+(Enπ+) extracted from both methods and
the right panel shows C12π+(t), which is decomposed into contributions from excited state, the ground state
and all thermal states.
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Figure 3: Left panel shows En1π+,n2π+ extracted from Cn1π+,n2π+ plotted against x = 2n1 +n2. Statistical
error and systematic error are added up in quadrature. Right panel is C40π+(t) calculated from the new
method.

more than the one source case. Similarly studying system of 36 π+’s requires a third source,
and becomes O(100) times more expensive again. In order to overcome this difficulty, we have
developed a new method which is much faster than the recursion relation method and can easily
study systems of at least 72 mesons [6]. This new method is based on the fact that the ground state
energies extracted from all Cn1,n2(t) for fixed n1 +n2 are the same as they correspond to the same
spectrum but with different overlaps, shown in Fig. 3.

For systems containing large number of π+’s, thermal states dominate the correlation function
at later time slices, while excited states dominate earlier time slices, and extracting the ground state
energy becomes extremely difficulty and systematic error is hard to control. In order to get better
ground state signals we have also studied the system on 203× 256 lattices (with other parameters
unaltered) using the new method mentioned above.

3.4 Isospin chemical potential (µI) and pressure

The isospin chemical potential, the µI , is defined as µI (n) = dE
dn , which is approximated by

using a backward finite difference on the lattice. As the systematic errors of ground state energies

5
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Figure 4: The left panel shows energies of a rest system of n-π+(Enπ+) extracted from 203× 256 lattice,
and the right panel shows the isospin chemical potential as a functions of isospin density. Lattice space
a = 0.125 f m. The solid black line is from χPT [2]

extracted from the T = 128 lattices are large for systems with large number of π+’s, we do not
extract µI from these lattices. The 203×256 lattices give much better ground state signals, having
an extremely long plateau in the effective mass plot, and a one exponential fit is enough to get the
ground state energy. In Fig. 4, we show the ground state energies and isospin chemical potentials
from the 203×256 lattice calculated with the newly constructed method mentioned above. µ I is
consistent with predictions from χPT [2] at small density and starts to deviate from them for larger
densities.

Since calculations have been done on several lattices sizes {163,203,243}×128, the pressure
(P) can be derived as function of density by utilizing the discrete version of P= dE

dV for fixed number
of π+. One definition is the following:

P(ρI) =
ELi

n −EL j
n

(Li ·a)3− (L j ·a)3

ρI =
n

((Li +L j) ·a/2)3 (3.2)

where Li,L j = 16,20,24 and a = 0.125 f m. Although we can not extract Enπ+ reliably for large n
on these ensambles, the pressure can still be studied as a function of isospin density from Enπ+ for
small n. The pressure is plotted as a function of isospin density in Fig. 5.

4. Conclusion

We have calculated correlation functions of systems up to 24π+s in momentum space by ap-
plying the recursion relation of Ref. [1], verified the dispersion relation, and extracted ground state
energies of n-π+ systems. Because of the contamination from thermal states in later time slices
and excited states in earlier time slices, it is extremely difficult to see the ground state of systems
having more than 12π+’s for 203×128 anisotropic lattices (at ∼ 0.04) at this pion mass. In order
to reduce contamination from thermal states, we also use 203×256 lattices. Correlation functions
from these larger temporal extent lattices give clear ground state signal, and a one exponential fit is
sufficient enough to reliably extract the ground state energy even for 72 mesons.
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Figure 5: The pressure is computed from energy differences for fixed n on different lattice sizes. Red points
are from 163-203 lattices, green points are from 163-243 lattices, and blue points are from 203-243 lattices.

Although the recursion relation requires much less time than direct contractions, it becomes
O(100) times more expensive with an additional source. Studying 3 sources system becomes quite
expensive and studying 4 sources system becomes impractical. In order to overcome this difficulty,
we have developed a new method. This new method is far more efficient than the recursion relation
method, allowing us to study systems of up to 72 mesons [6].
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