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η andη ′ masses from Nf = 2+1+1 tmLQCD Konstantin Ottnad

ensemble β aµℓ aµσ aµδ L/a

A40.24 1.90 0.0040 0.150 0.190 24
A60.24 1.90 0.0060 0.150 0.190 24
A80.24 1.90 0.0080 0.150 0.190 24

A80.24s 1.90 0.0080 0.150 0.197 24

B25.32 1.95 0.0025 0.135 0.170 32
B35.32 1.95 0.0035 0.135 0.170 32
B85.24 1.95 0.0085 0.135 0.170 24

Table 1: The ensembles used in this investigation. The notation of ref. [3] is used for labeling the ensembles.

1. Introduction

From experiment it is known that the masses of the nine light pseudo-scalar mesons show an
interesting pattern. Taking the quark model point of view, the three lightest mesons, the pions,
contain only the two lightest quark flavours, theup- anddown-quarks. The pion triplet has a mass
of Mπ ≈ 140 MeV. For the other six, thestrangequark contributes also, and hence they are heavier.
In contrast to what one might expect five of them, the four kaons and theη meson, have roughly
equal mass around 500 to 600 MeV, while the last one, theη ′ meson, is much heavier, with mass
of about 1 GeV. On the QCD level, the reason for this pattern isthought to be the breaking of
theUA(1) symmetry by quantum effects. Theη ′ meson is, even in a world with three massless
quarks, not a Goldstone boson. In this proceeding contribution, we discuss the determination ofη
andη ′ meson masses using twisted mass lattice QCD (tmLQCD) withNf = 2+1+1 dynamical
quark flavours. This will not only allow a study of the dependence of theη ,η ′ masses on the light
quark mass value, but also an investigation of the charm quark contribution to both of these states.
Moreover, theηc meson mass can be studied in principle. For recent lattice studies inNf = 2+1
flavour QCD see [1, 2].

2. Lattice Action

We use gauge configurations as produced by the European Twisted Mass Collaboration (ETMC)
with Nf = 2+1+1 flavours of Wilson twisted mass quarks and Iwasaki gauge action [3, 4]. The
details are described in ref. [3] and the ensembles used in this investigation are summarised in
table 1. The twisted mass Dirac operator in the light – i.e. up/down – sector reads [5]

Dℓ = DW +m0+ iµℓγ5τ3 (2.1)

and in the strange/charm sector [6]

Dh = DW +m0+ iµσ γ5τ1+µδ τ3 , (2.2)

whereDW is the Wilson Dirac operator. The value ofm0 was tuned to its critical value as discussed
in refs. [7, 3] in order to realise automaticO(a) improvement at maximal twist [8]. Note that the
bare twisted massesµσ ,δ are related to the bare strange and charm quark masses via therelation

mc,s = µσ ± (ZP/ZS) µδ (2.3)
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with pseudo-scalar and scalar renormalisation constantsZP andZS. Quark fields in the twisted basis
are denoted byχℓ,h and in the physical basis byψℓ,h. They are related via the axial rotations

χℓ = eiπγ5τ3/4ψℓ , χ̄ℓ = ψ̄ℓ eiπγ5τ3/4 , χh = eiπγ5τ1/4ψh , χ̄h = ψ̄h eiπγ5τ1/4 . (2.4)

With automaticO(a) improvement being the biggest advantage of tmLQCD at maximal twist,
the downside is that flavour symmetry is broken at finite values of the lattice spacing. This was
shown to affect mainly the mass value of the neutral pion mass[9, 10, 11], however, in the case of
Nf = 2+1+1 dynamical quarks, it implies the complication of mixing between strange and charm
quarks.

3. Flavour Singlet Pseudo-Scalar Mesons in Nf = 2+1+1 tmLQCD

In order to compute masses of pseudo-scalar flavour singlet mesons we have to include light,
strange and charm contributions to build the appropriate correlation functions. In the light sector,
one appropriate operator is given by [12]

1√
2
(ψuiγ5ψu+ψdiγ5ψd) →

1√
2
(χ̄uχu− χ̄dχd)≡ ℓ . (3.1)

In the strange and charm sector, the corresponding operatorreads
(

ψ̄c

ψ̄s

)

iγ5
1± τ3

2

(

ψc

ψs

)

→

(

χ̄c

χ̄s

)

−τ1± iγ5τ3

2

(

χc

χs

)

. (3.2)

In practice we need to compute correlation functions of the following interpolating operators

Pss ≡ (ψ̄siγ5ψs) = (χ̄ciγ5χc− χ̄siγ5χs)/2−
ZS

ZP
(χ̄sχc+ χ̄cχs)/2,

Pcc ≡ (ψ̄ciγ5ψc) = (χ̄siγ5χs− χ̄ciγ5χc)/2−
ZS

ZP
(χ̄sχc+ χ̄cχs)/2.

(3.3)

Note that the sum of pseudo-scalar and scalar contributionsappears with the ratio of renormal-
isation factorsZ ≡ ZS/ZP, which needs to be taken into account properly.Z has not yet been
determined for all values ofβ non-perturbatively.

However, for the mass determination, we can avoid this complication by changing the basis
and compute the real and positive definite correlation matrix

C =







ηℓℓ ηℓPh ηℓSh

ηPhℓ ηPhPh ηPhSh

ηShℓ ηShPh ηShSh






, (3.4)

with the notation

Ph ≡ (χ̄ciγ5χc− χ̄siγ5χs)/2, Sh ≡ (χ̄sχc+ χ̄cχs)/2 (3.5)

andηXY denoting the corresponding correlation function. Masses can determined by solving the
generalised eigenvalue problem [13, 14]

C (t) η (n)(t, t0) = λ (n)(t, t0) C (t0) η (n)(t, t0) . (3.6)
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Taking into account the periodic boundary conditions for a meson, we can determine the effective
masses by solving

λ (n)(t, t0)

λ (n)(t +1, t0)
=

e−m(n)t +e−m(n)(T−t)

e−m(n)(t+1)+e−m(n)(T−(t+1))
(3.7)

for m(n), wheren counts the eigenvalues. The state with the lowest mass should correspond to the
η and the second state to theη ′ meson.

From the componentsη (n)
0,1,2 of the eigenvectors, we can reconstruct the physical flavourcon-

tentsc(n)ℓ,s,c from

c(n)ℓ =
1

N (n)
(η (n)

0 )

c(n)s =
1

N (n)
(−Zη (n)

1 +η (n)
2 )/

√
2

c(n)c =
1

N (n)
(−Zη (n)

1 −η (n)
2 )/

√
2

(3.8)

with normalisation

N
(n) =

√

(η (n)
0 )2+(Zη (n)

1 )2+(η (n)
2 )2 .

At this point the ratioZ ≡ ZS/ZP is needed again. Assuming for a moment that charm does not
contribute significantly to theη andη ′ states, one can extract theη-η ′ mixing angleφ from

cos(φ) = c(0)ℓ ≈ c(1)s , sin(φ) =−c(0)s = c(1)ℓ (3.9)

with (0) ((1)) denoting theη (η ′) state.

4. Results

We have computed all contractions needed for building the correlation matrix of eq. (3.4).
For the connected contributions, we used stochastic time-slice sources (the so called “one-end-
trick” [15]). For the disconnected contributions, we used stochastic volume sources with complex
Gaussian noise [15]. As discussed in ref. [12] one can estimate the light disconnected contributions
very efficiently using the identity

D−1
u −D−1

d =−2iµℓD
−1
d γ5 D−1

u .

For the heavy sector such a simple relation does not exist, but we can use the so called hopping
parameter variance reduction, which relies on the same equality as in the mass degenerate two
flavour case (see ref. [15] and references therein)

D−1
h = B−BHB+B(HB)2−B(HB)3+D−1

h (HB)4

with Dh = (1+HB)A, B= 1/A andH the two flavour hopping matrix. We use 24 stochastic volume
sources per gauge configuration in both the heavy and the light sector.

We use both local and fuzzed sources to enlarge our correlation matrix by a factor two. In
addition to the interpolating operator quoted in eqs. (3.1)and (3.2), we also plan to consider the
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Figure 1: (a) Effective masses in lattice units determined from solving the generalised eigenvalue problem
with t0/a= 1 for ensemble B25.32. We show the results extracted from a 3×3 matrix. (b) squared flavour
content ofη for B25.32.

γ-matrix combinationiγ0γ5, which will increase the correlation matrix by another factor of two.
The number of gauge configurations investigated per ensemble is in most cases around 1200, and
for ensemble B25.32 is 1500. Statistical errors are computed using the bootstrap method with 1000
samples.

In figure 1 we show the effective masses determined from solving the generalised eigenvalue
problem for ensemble B25.32 from a 3×3 matrix with local operators only. We keptt0/a= 1 fixed.
One observes that the ground state is very well determined and it can be extracted from a plateau fit.
The second state, i.e. theη ′, is much more noisy and a mass determination is questionable, at least
from a 3× 3 matrix. Enlarging the matrix size significantly reduces the contributions of excited
states to the lowest states and, due to smaller statistical errors at smallert values, a determination
becomes possible. The third state appears to be in the regionwhere one would expect theηc mass
value, however, the signal is lost att/a = 5 already, which makes a reliable determination not
feasible.

In figure 2 we show the masses of theη andη ′ mesons for the various ensembles we used
as a function of the squared pion mass. In addition we show thecorresponding physical values.
The scale was set fromfπ andmπ using the results of ref. [3]. It is clear that theη meson mass
can be extracted with high precision, while theη ′ meson mass requires a larger correlation matrix,
which is work in progress. The comparison with the corresponding physical values seems to point
towards good agreement.

We also determine the flavour content of the two states as explained above. It turns out that
theη has a dominant strange quark content (see right panel of figure 1), while theη ′ is dominated
by light quarks. For both the charm contribution is rather small, however, for theη it turns out
to be significantly non-zero. A preliminary determination of the mixing angle eq. (3.9) yields a
very stable value of about 60◦. Note that this is the mixing angle to the flavour eigenstates. The
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Figure 2: Preliminary values formη andmη ′ for two β -values in physical units as a function of the squared
pion mass. Filled symbols representmη , open onesmη ′ .

computation of the mixing angle with respect to theη0 andη8 states is in progress.

4.1 Bare Strange and Charm Quark Mass Dependence

The results displayed in figure 2 have been obtained using thebare values ofµσ andµδ as used
for the production of the ensembles. Those values, however,did not lead to the correct values of,
for e.g., the kaon andD-meson masses, see e.g. ref. [4]. Moreover, the physical strange and charm
quark mass values differ between theA andB ensembles. Hence, figure 2 is not yet conclusive with
regards to the size of lattice artifacts and extrapolation to the physical point. What we can learn is
that the light quark mass dependence in both states appears to be rather weak.

We also have two ensembles A80.24 and A80.24s with differentbare values forµσ ,δ and a
retuned value forκ but identical parameters otherwise. Ensemble A80.24s is significantly better
tuned with respect to the physical kaon mass value [4]. As seen in figure 2, our results seem to
indicate that this change in the bare parameters also has a significant impact on theη meson mass
value, while theη ′ mass is unaffected within the (rather large) errors.

5. Summary and Outlook

We presented a computation ofη andη ′ meson masses fromNf = 2+1+1 Wilson twisted
mass lattice QCD. The results we obtained so far are rather encouraging, theη meson mass can
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be determined with high precision. Also for theη ′ meson mass, we hope to be able to give more
precise results by increasing the correlation matrix underinvestigation.

As it is not so easy to tune bare strange and charm quark massesexactly, we shall in the
future use a mixed action approach for strange and charm quarks. This will not only avoid the
complication induced by flavour symmetry breaking in the twisted mass formulation, but it will
also allow to use the efficient noise reduction techniques inthe heavy sector. However, this method
requires a careful investigation of unitarity breaking effects.
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