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1. Introduction

This section, addressed to beginning researchers, is divided into two parts. The first provides
a broad historical perspective and the second illustrates key physical and conceptual problems of
quantum gravity. Researchers who are already quite familiar with quantum gravity can/should go
directly to section 2; there will be no loss of continuity.

1.1 Development of Quantum Gravity: A Bird’s Eye View

The necessity of a quantum theory of gravity was pointed out by Einstein already in a 1916
paper in the Preussische Akademie Sitzungsberichte. He wrote:

• Nevertheless, due to the inneratomic movement of electrons, atoms would have to radiate not
only electromagnetic but also gravitational energy, if only in tiny amounts. As this is hardly
true in Nature, it appears that quantum theory would have to modify not only Maxwellian
electrodynamics but also the new theory of gravitation.•

Papers on the subject began to appear in the 1930s most notably by Bronstein, Rosenfeld and
Pauli. However, detailed work began only in the sixties. Thegeneral developments since then
loosely represent four stages, each spanning roughly a decade and a half. In this section, I will
present a sketch these developments.

First, there was the beginning: exploration. The goal was todo unto gravity as one would
do unto any other physical field [9].1 The electromagnetic field had been successfully quantized
using two approaches: canonical and covariant. In the canonical approach, electric and magnetic
fields obeying Heisenberg’s uncertainty principle are at the forefront, and quantum states naturally
arise as gauge-invariant functionals of the vector potential on a spatial three-slice. In the covariant
approach on the on the other hand, one first isolates and then quantizes the two radiative modes
of the Maxwell field in space-time, without carrying out a (3+1)-decomposition, and the quantum
states naturally arise as elements of the Fock space of photons. Attempts were made to extend
these techniques to general relativity. In the electromagnetic case the two methods are completely
equivalent. Only the emphasis changes in going from one to another. In the gravitational case,
however, the difference isprofound. This is not accidental. The reason is deeply rooted in one of
the essential features of general relativity, namely the dual role of the space-time metric.

To appreciate this point, let us begin with field theories in Minkowski space-time, say Maxwell’s
theory to be specific. Here, the basic dynamical field is represented by a tensor fieldFµν on
Minkowski space. The space-time geometry provides the kinematical arena on which the field
propagates. The background, Minkowskian metric provides light cones and the notion of causality.
We can foliate this space-time by a one-parameter family of space-like three-planes, and analyze
how the values of electric and magnetic fields on one of these surfaces determine those on any other
surface. The isometries of the Minkowski metric let us construct physical quantities such as fluxes
of energy, momentum, and angular momentum carried by electromagnetic waves.

1Since this introduction is addressed to non-experts, I willgenerally refer to books and review articles which sum-
marize the state of the art at various stages of development of quantum gravity. References to original papers can be
found in these reviews.
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In general relativity, by contrast, there is no background geometry. The space-time metric itself
is the fundamental dynamical variable. On the one hand it is analogous to the Minkowski metric in
Maxwell’s theory; it determines space-time geometry, provides light cones, defines causality, and
dictates the propagation of all physical fields (including itself). On the other hand it is the analog of
the Newtonian gravitational potential and therefore the basic dynamical entity of the theory, similar
in this respect to theFµν of the Maxwell theory. This dual role of the metric is in effect a precise
statement of the equivalence principle that is at the heart of general relativity. It is this feature that
is largely responsible for the powerful conceptual economyof general relativity, its elegance and
its aesthetic beauty, its strangeness in proportion. However, this feature also brings with it a host
of problems. We see already in the classical theory several manifestations of these difficulties. It is
because there is no background geometry, for example, that it is so difficult to analyze singularities
of the theory and to define the energy and momentum carried by gravitational waves. Since there
is no a priori space-time, to introduce notions as basic as causality, time, and evolution, one must
first solve the dynamical equations andconstructa space-time. As an extreme example, consider
black holes, whose traditional definition requires the knowledge of the causal structure of the entire
space-time. To find if the given initial conditions lead to the formation of a black hole, one must
first obtain their maximal evolution and, using the causal structure determined by that solution, ask
if the causal pastJ−(I +) of its future infinity I + is the entire space-time. If not, space-time
contains a black hole and the future boundary ofJ(I +) within that space-time is its event horizon.
Thus, because there is no longer a clean separation between the kinematical arena and dynamics, in
the classical theory substantial care and effort is needed even in the formulation of basic physical
questions.

In quantum theory the problems become significantly more serious. To see this, recall first
that, because of the uncertainty principle, already in non-relativistic quantum mechanics, particles
do not have well-defined trajectories; time-evolution onlyproduces a probability amplitude,Ψ(x, t),
rather than a specific trajectory,x(t). Similarly, in quantum gravity, even after evolving an initial
state, one would not be left with a specific space-time. In theabsence of a space-time geometry,
how is one to introduce even habitual physical notions such as causality, time, scattering states, and
black holes?

The canonical and the covariant approaches adopted dramatically different attitudes to face
these problems. In the canonical approach, one notices that, in spite of the conceptual difficulties
mentioned above, the Hamiltonian formulation of general relativity is well-defined and attempts
to use it as a stepping stone to quantization. The fundamental canonical commutation relations
are to lead us to the basic uncertainty principle. The motiongenerated by the Hamiltonian is
to be thought of as time evolution. The fact that certain operators on the fixed (‘spatial’) three-
manifold commute is supposed to capture the appropriate notion of causality. The emphasis is
on preserving the geometrical character of general relativity, on retaining the compelling fusion
of gravity and geometry that Einstein created. In the first stage of the program, completed in the
early 1960s, the Hamiltonian formulation of the classical theory was worked out in detail by Dirac,
Bergmann, Arnowitt, Deser and Misner and others [2, 5, 13, 6,16]. The basic canonical variable
was the 3-metric on a spatial slice. The ten Einstein’s equations naturally decompose into two sets:
four constraints on the metric and its conjugate momentum (analogous to the equation Div~E = 0
of electrodynamics) and six evolution equations. Thus, in the Hamiltonian formulation, general
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relativity could be interpreted as the dynamical theory of 3-geometries. Wheeler therefore baptized
it geometrodynamics[3, 4].

In the second stage, this framework was used as a point of departure for quantum theory by
Bergmann, Komar, Wheeler DeWitt and others. The basic equations of the quantum theory were
written down and several important questions were addressed [4, 16]. Wheeler also launched an
ambitious program in which the internal quantum numbers of elementary particles were to arise
from non-trivial, microscopic topological configurationsand particle physics was to be recast as
‘chemistry of geometry’. However, most of the work in quantum geometrodynamics continued to
remain formal; indeed, even today the field theoretic difficulties associated with the presence of
an infinite number of degrees of freedomin the Wheeler DeWitt equation remain unresolved. Fur-
thermore, even at the formal level, is has been difficult to solve the quantum Einstein’s equations.
Therefore, after an initial burst of activity, the quantum geometrodynamics program became stag-
nant. Interesting results have been obtained by Misner, Wheeler, DeWitt and others in the limited
context of quantum cosmology where one freezes all but a finite number of degrees of freedom.
However, even in this special case, the initial singularitycould not be resolved without additional
‘external’ inputs into the theory, such as the use of matter violating energy conditions. Sociologi-
cally, the program faced another limitation: concepts and techniques which had been so successful
in quantum electrodynamics appeared to play no role here. Inparticular, in quantum geometrody-
namics, it is hard to see how gravitons are to emerge, how scattering matrices are to be computed,
how Feynman diagrams are to dictate dynamics and virtual processes are to give radiative correc-
tions. To use a well-known phrase [7], the emphasis on geometry in the canonical program “drove
a wedge between general relativity and the theory of elementary particles."

In the covariant2 approach [6, 8, 10] the emphasis is just the opposite. Field-theoretic tech-
niques are put at the forefront. The first step in this programis to split the space-time metricgµν

in two parts,gµν = ηµν +
√

Ghµν , whereηµν is to be a background, kinematical metric, often
chosen to be flat,G is Newton’s constant, andhµν , the deviation of the physical metric from the
chosen background, the dynamical field. The two roles of the metric tensor are now split. The
overall attitude is that this sacrifice of the fusion of gravity and geometry is a moderate price to
pay for ushering-in the powerful machinery of perturbativequantum field theory. Indeed, with this
splitting most of the conceptual problems discussed above seem to melt away. Thus, in the tran-
sition to the quantum theory it is onlyhµν that is quantized. Quanta of this field propagate on the
classical background space-time with metricηµν . If the background is in fact chosen to be flat, one
can use the Casimir operators of the Poincaré group and show that the quanta have spin two and
rest mass zero. These are the gravitons. The Einstein-Hilbert Lagrangian tells us how they interact
with one another. Thus, in this program, quantum general relativity was first reduced to a quantum
field theory in Minkowski space. One could apply to it all the machinery of perturbation theory
that had been so successful in particle physics. One now had adefinite program to compute ampli-
tudes for various scattering processes. Unruly gravity appeared to be tamed and forced to fit into
the mold created to describe other forces of Nature. Thus, the covariant quantization program was
more in tune with the mainstream developments in physics at the time. In 1963 Feynman extended

2In the context of quantum gravity, the term ‘covariant’ is somewhat misleading because the introduction of a
background metric violates diffeomorphism covariance. Itis used mainly to emphasize that this approach does not
involve a 3+1 decomposition of space-time.
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perturbative methods from quantum electrodynamics to gravity. A few years later DeWitt carried
this analysis to completion by systematically formulatingthe Feynman rules for calculating scat-
tering amplitudes among gravitons and between gravitons and matter quanta. He showed that the
theory is unitary order by order in the perturbative expansion. By the early seventies, the covariant
approach had led to several concrete results [8].

Consequently, the second stage of the covariant program began with great enthusiasm and
hope. The motto was: Go forth, perturb, and expand. The enthusiasm was first generated by the
discovery that Yang-Mills theory coupled to fermions is renormalizable (if the masses of gauge
particles are generated by a spontaneous symmetry-breaking mechanism).3 This led to a success-
ful theory of electroweak interactions. Particle physics witnessed a renaissance of quantum field
theory. The enthusiasm spilled over to gravity. Courageouscalculations were performed to esti-
mate radiative corrections. Unfortunately, however, thisresearch soon ran into its first road block.
The theory was shown to be non-renormalizable when two loop effects are taken into account for
pure gravity and already at one loop for gravity coupled withmatter [17]. To appreciate the sig-
nificance of this result, let us return to the quantum theory of photons and electrons. This theory
is perturbatively renormalizable. This means that, although individual terms in the perturbation
expansion of a physical amplitude may diverge due to radiative corrections involving closed loops
of virtual particles, these infinities are of a specific type;they can be systematically absorbed in
the values of free parameters of the theory, the fine structure constant and the electron mass. Thus,
by renormalizing these parameters, individual terms in theperturbation series can be systemati-
cally rendered finite. In quantum general relativity, such asystematic procedure is not available;
infinities that arise due to radiative corrections are genuinely troublesome. Put differently, quantum
theory acquires an infinite number of undetermined parameters. Although one can still use it as an
effective theory in the low energy regime, regarded as a fundamental theory, it has no predictive
power at all!

Buoyed, however, by the success of perturbative methods in electroweak interactions, the parti-
cle physics community was reluctant to give them up in the gravitational case. In the case of weak
interactions, it was known for some time that the observed low energy phenomena could be ex-
plained using Fermi’s simple four-point interaction. The problem was that this Fermi model led to
a non-renormalizable theory. The correct, renormalizablemodel of Glashow, Weinberg and Salam
agrees with Fermi’s at low energies but marshals new processes at high energies which improve
the ultraviolet behavior of the theory. It was therefore natural to hope that the situation would be
similar in quantum gravity. General relativity, in this analogy, would be similar to Fermi’s model.
The fact that it is not renormalizable was taken to mean that it ignores important processes at high
energies which are, however, unimportant at low energies, i.e., at large distances. Thus, the idea
was that the correct theory of gravity would differ from general relativity but only at high energies,
i.e., near the Planck regime. With this aim, higher derivative terms were added to the Einstein-
Hilbert Lagrangian. If the relative coupling constants arechosen judiciously, the resulting theory
does in fact have a better ultraviolet behavior. Stelle, Tomboulis and others showed that the theory
is not only renormalizable but asymptotically free; it resembles the free theory in the high energy

3In fact DeWitt’s quantum gravity work [8] played a seminal role in the initial stages of the extension of perturbative
techniques from Abelian to non-Abelian gauge theories.
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limit. Thus, the initial hope of ‘curing’ quantum general relativity was in fact realized. However, it
turned out that the Hamiltonian of this theory is unbounded from below, and consequently the the-
ory is drastically unstable! In particular, it violates unitarity; probability fails to be conserved. The
success of the electroweak theory suggested a second line ofattack. In the approaches discussed
above, gravity was considered in isolation. The successfulunification of electromagnetic and weak
interactions suggested the possibility that a consistent theory would result only when gravity is
coupled with suitably chosen matter. The most striking implementation of this viewpoint occurred
in supergravity. Here, the hope was that the bosonic infinities of the gravitational field would be
canceled by those of suitably chosen fermionic sources, giving us a renormalizable quantum theory
of gravity. Much effort went into the analysis of the possibility that the most sophisticated of these
theories —N = 8 supergravity— can be employed as a genuine grand unified theory.4 It turned out
that cancelations of infinities do occur. Over the last five years or so, there has been a resurgence of
interest in this area [55]. It has now been shown that supergravity is finite to four loops even though
it contains matter fields coupled to gravity. Furthermore, its Hamiltonian is manifestly positive and
the theory is unitary. However, there are several argumentssuggesting that the theory would not be
renormalizable at seven loops. This is still an open issue but could be settled in the next 2-3 years.

By and large, the canonical approach was pursued by relativists and the covariant approach by
particle physicists. In the mid 1980s, both approaches received unexpected boosts. These launched
the third phase in the development of quantum gravity.

A group of particle physicists had been studying string theory to analyze strong interactions
from a novel angle. The idea was to replace point particles by1-dimensional extended objects —
strings— and associate particle-like states with various modes of excitations of the string. Initially
there was an embarrassment: in addition to the spin-1 modes characteristic of gauge theories, string
theory included also a spin-2, massless excitation. But it was soon realized that this was a blessing
in disguise: the theory automatically incorporated a graviton. In this sense, gravity was already
built into the theory! However, it was known that the theory had a potential quantum anomaly
which threatened to make it inconsistent. In the mid 1980s, Greene and Schwarz showed that
there is an anomaly cancelation and perturbative string theory could be consistent in certain space-
time dimensions —26 for a purely bosonic string and 10 for a superstring [20, 31]. Since strings
were assumed to live in a flat background space-time, one could apply perturbative techniques.
However, in this reincarnation, the covariant approach underwent a dramatic revision. Since it is a
theory of extended objects rather than point particles, thequantum theory has brand new elements;
it is no longer a local quantum field theory. The field theoretic Feynman diagrams are replaced
by world-sheet diagrams. This replacement dramatically improves the ultraviolet behavior and,
although explicit calculations have been carried out only at 2 or 3 loop order, in the string theory
community it is widely believed that the perturbation theory is finite to all orders; it does not even
have to be renormalized. The theory is also unitary. It has a single, new fundamental constant

4For a number of years, there was a great deal of confidence, especially among particle physicists, that supergravity
was on the threshold of providing the complete quantum gravity theory. For instance, in the centennial celebration of
Einstein’s birthday at the Institute of Advanced Study, Princeton [14] —the proceedings of which were videotaped and
archived for future historians and physicists— there were two talks on quantum gravity, both devoted to supergravity. A
year later, in his Lucasian Chair inaugural address Hawking[15] suggested that end of theoretical physics was in sight
becauseN = 8 supergravity was likely to be the final theory.
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—the string tension— and, since various excited modes of thestring represent different particles,
there is a built-in principle for unification of all interactions!5 From the viewpoint of local quantum
field theories that particle physicists have used in studying electroweak and strong interactions, this
mathematical structure seems almost magical. Therefore there has been a long-standing hope in
the string community that this theory would encompass all offundamental physics; it would be the
‘theory of everything’.

Unfortunately, it soon became clear that string perturbation theory also faces some serious lim-
itations. Perturbative finiteness would imply that each term in the perturbation series is ultra-violet
finite.6 However Gross and Periwal have shown that in the case of bosonic strings, when summed,
the series diverges and does so uncontrollably. (Technically, it is not even Borel-summable.) They
also gave arguments that the conclusion would not be changedif one uses superstrings instead.
Independent support for these arguments has come from work on random surfaces due to Ambjorn
and others. One might wonder why the divergence of the sum should be regarded as a serious
failure of the theory. After all, in quantum electrodynamics, the series is also believed to diverge.
Recall however that quantum electrodynamics is an inherently incomplete theory. It ignores many
processes that come into play at high energies or short distances. In particular, it completely ig-
nores the microstructure of space-time and simply assumes that space-time can be approximated by
a smooth continuum even below the Planck scale. Therefore, it can plead incompleteness and shift
the burden of this infinity to a more complete theory. A ‘theory of everything’ on the other hand,
has nowhere to hide. It cannot plead incompleteness and shift its burden. It must face the Planck
regime squarely. If the theory is to be consistent, it must have key non-perturbative structures.

The current and the fourth stage of the particle physics motivated approaches to quantum grav-
ity is largely devoted to unraveling such structures and using them to make unsuspected connections
between gravity and other areas of physics such as fluid dynamics and high temperature supercon-
ductivity. It is widely believed that the AdS/CFT conjecture provides a non-perturbative definition
of string theory on space-times satisfying certain boundary conditions [49]. More precisely, in this
correspondence string theory on asymptotically AdS bulk space-times is taken to be equivalent to
certain gauge theories on its boundary. However, from the perspective of quantum gravity, this ap-
proach has some serious limitations. First, a negative cosmological constant in the bulk is essential
to this correspondence while the observed cosmological constant is positive. Considerable effort
were made initially to extend the ideas to a positive or zero cosmological constant but they have
not had notable success. Second, the bulk space-time is 10 dimensional. One can compactify the
unwanted dimensions using n-spheres, but the compactified directions cannot be microscopic; the
correspondence requires that the radius of these spheres should equal the cosmological radius! So
if one just looks around, one should see these large macroscopic dimensions. Consequently, the
non-perturbative string theory defined through the conjecture has little to do with the macroscopic
world we live in. Finally, even if one overlooks this issue and considers space-times with higher
macroscopic dimensions, the AdS/CFT duality is yet to shed light on the conceptually central is-

5To date, none of the low energy reductions appears to correspond to the world we actually observe. Nonetheless,
string theory has provided us with a glimpse of an entirely new vista: the concrete possibility that unification could be
brought about by a tightly woven, non-local theory.

6But it does appear that there are infrared divergences. As inQED, these are regarded as ‘harmless’ for calculation
of physical effects. I thank Ashoke Sen for discussions on this issue.
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sues such as the space-time structure inside the horizon of an evaporating black hole or the fate of
big-bang type cosmological singularities. The recent thrust —and the strength— of these devel-
opments is, rather, that they enable one to use known techniques from gravity and supergravity to
solve some of the difficult mathematical problems encountered in the strong coupling regimes of
field theories describingnon-gravitationalsystems.

On the relativity side, the third stage began with the following observation: the geometrody-
namics program laid out by Dirac, Bergmann, Wheeler and others simplifies significantly if we
regard a spatial connection —rather than the 3-metric— as the basic object. In fact we now know
that, among others, Einstein and Schrödinger had recast general relativity as a theory of connec-
tions already in the fifties.(For a brief account of this fascinating history, see [33].) However, they
used the ‘Levi-Civita connection’ that features in the parallel transport of vectors and found that
the theory becomes rather complicated. This episode had been forgotten and connections were
re-introduced afresh in the mid 1980s [22].7 However, now these are ‘spin-connections’ required
to parallel propagate spinors, and they turn out tosimplify Einstein’s equations considerably. For
example, the dynamical evolution dictated by Einstein’s equations can now be visualized simply
as ageodesic motionon the space of spin-connections (with respect to a natural metric extracted
from the constraint equations). Since general relativity is now regarded as a dynamical theory of
connections, this reincarnation of the canonical approachis called ‘connection-dynamics’.

Perhaps the most important advantage of the passage from metrics to connections is that the
phase-space of general relativity is now the same as that of gauge theories [22, 26]. The ‘wedge
between general relativity and the theory of elementary particles’ that Weinberg referred to largely
disappears without having to sacrifice the geometrical essence of general relativity. One could
now import into general relativity techniques that have been highly successful in the quantization
of gauge theories. At the kinematic level, then, there is a unified framework to describe all four
fundamental interactions. The dynamics, of course, depends on the interaction. In particular,
while there is a background space-time geometry in electroweak and strong interactions, there is
none in general relativity. Therefore, qualitatively new features arise. These were exploited in
the late eighties and early nineties to solve simpler models—general relativity in 2+1 dimensions
[22, 23, 29]; linearized gravity clothed as a gauge theory [22]; and certain cosmological models.
To explore the physical, 3+1 dimensional theory, a ‘loop representation’ was introduced by Rovelli
and Smolin. Here, quantum states were taken to be suitable functions of loops on the 3-manifold.8

This led to a number of interesting and intriguing results, particularly by Gambini, Pullin and

7This reformulation used (anti-)self-dual connections which are complex. These have a direct interpretation in
terms space-time geometry and also render the constraint equations polynomial in the basic variables. This simplicity
was regarded as crucial for passage to quantum theory. However, one is then faced with the task of imposing appropriate
quantum ‘reality conditions’ to ensure that the classical limit is real general relativity. Barbero introduced real connection
variables by replacing the±i in the expression of the (anti-)self-dual connections witha real parameterβ . However,
now the connection does not have a natural space-time interpretation and the constraints are no longer polynomial in
the basic variables. But the strategy became viable after Thiemann introduced novel ideas to handle quantization of the
specific non-polynomial terms that now feature in the constraints. Since then this strategy has become crucial because
the rigorous functional calculus on the space of connections has so far been developed only for real connections. Immirzi
suggested that the value ofβ could be chosen so that the leading term in black hole entropyis precisely (area/4ℓ2

Pl). That
is why β (which is often denoted byγ in later papers) is referred to as theBarbero-Immirziparameter.

8This is the origin of the name ‘loop quantum gravity’. The loop representation played an important role in the
initial stages. Although this is no longer the case in the current, fourth phase, the name is still used to distinguish this
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their collaborators, relating knot theory and quantum gravity [28]. Thus, there was rapid and
unanticipated progress in a number of directions which rejuvenated the canonical quantization
program. Since the canonical approach does not require the introduction of a background geometry
or use of perturbation theory, and because one now has accessto fresh, non-perturbative techniques
from gauge theories, in relativity circles there is a hope that this approach may lead to well-defined,
non-perturbativequantum general relativity, or its supersymmetric version, supergravity.

However, a number of these considerations remained rather formal until mid-nineties. Passage
to the loop representation required an integration over theinfinite dimensional space of connections
and the formal methods were insensitive to possible infinities lurking in the procedure. Indeed, such
integrals are notoriously difficult to perform in interacting field theories. To pay due respect to the
general covariance of Einstein’s theory, one needed diffeomorphism invariant measures and there
were folk-theorems to the effect that such measures did not exist!

Fortunately, the folk-theorems turned out to be incorrect.To construct a well-defined theory
capable of handling field theoretic issues, aquantum theory of Riemannian geometrywas system-
atically constructed in the mid-nineties [38]. This launched the fourth (and the current) stage in
the canonical approach. Just as differential geometry provides the basic mathematical framework
to formulate modern gravitational theories in the classical domain, quantum geometry provides
the necessary concepts and techniques in the quantum domain. It is a rigorous mathematical the-
ory which enables one to perform integration on the space of connections for constructing Hilbert
spaces of states and to define geometric operators corresponding, e.g. to areas of surfaces and vol-
umes of regions, even though the classical expressions of these quantities involve non-polynomial
functions of the Riemannian metric. There are no infinities.One finds that, at the Planck scale,
geometry has a definite discrete structure. Its fundamentalexcitations are 1-dimensional, rather
like polymers, and the space-time continuum arises only as acoarse-grained approximation. The
fact that the structure of space-time at Planck scale is qualitatively different from Minkowski back-
ground used in perturbative treatments reinforced the ideathat quantum general relativity (or su-
pergravity) may well be non-perturbatively finite. Quantumgeometry effects have already been
shown to resolve the big-bang singularity and solve some of the long-standing problems associated
with black holes. (See lectures by Giesel, Sahlmann and Singh at this School.)

Over the last six years, another frontier has advanced in loop quantum gravity:spin foams(and
the associated development of group field theory) which provide a sum over histories formulation
[35, 39, 48]. The new element here is that the histories that enter the sum arequantumgeometries
of a specific type; they can be regarded as the ‘time evolution’ of the polymer-like quantum 3
geometries that emerged in the canonical approach. So far the sum has not been systematically
derived starting from the classical theory as one generallydoes in, say, gauge theories. Rather,
one uses semi-heuristic considerations to arrive at a definition of the ‘transition amplitudes’ and
then explores physical properties of the resulting quantumtheory. There are detailed arguments
to the effect that one recovers the Einstein Hilbert action in an appropriate limit. Furthermore,
although the underlying theory is diffeomorphism invariant, given a suitable ‘boundary state’, there
is a conceptual framework to calculate n-point functions normally used in perturbative treatments.
Information about the background space-time on which thesen-point functions live is encoded in

approach from others.
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the chosen ‘boundary state’. However, a number of importantproblems still remain. The status
is described in detail in the lectures by Rovelli, Speziale,Baratin, Perini, Fairbairn, Bianchi and
Kaminski at this school.

The first three stages of developments in quantum gravity taught us many valuable lessons.
Perhaps the most important among them is the realization that perturbative, field theoretic methods
which have been so successful in other branches of physics are inadequate to construct quantum
gravity. The assumption that space-time can be replaced by asmooth continuum at arbitrarily
small scales leads to inconsistencies. We can neither ignore the microstructure of space-time nor
presuppose its nature. We must let quantum gravity itself reveal this structure to us.

For brevity and to preserve the flow of discussion, I have restricted myself to the ‘main-stream’
programs whose development can be continuously tracked over several decades. However, I would
like to emphasize that there are a number of other highly original approaches —particularly, the
Euclidean path integral approach [12], Regge calculus [24], asymptotic safety scenarios [47], dis-
crete approaches [50], causal dynamical triangulations [30, 40], twistor theory [11, 21, 43] and the
theory of H-spaces [18], asymptotic quantization [19], non-commutative geometry [25], causal sets
[37, 44] and Topos theory [51, 56]. Ideas underlying severalof these approaches are inter-related
and some of them lie at the foundation of other avenues. This is particularly true of the path integral
approach pioneered by Misner, and developed in much greaterdetail in the Euclidean context by
Hawking, Hartle, Halliwell and others. Ideas developed in this approach have provided the point of
departure for the ongoing developments in causal dynamicaltriangulations, asymptotic safety and
spin foams.

1.2 Physical Questions of Quantum Gravity

Approaches to quantum gravity face two types of issues: Problems that are ‘internal’ to indi-
vidual programs and physical and conceptual questions thatunderlie the whole subject. Examples
of the former are: Incorporation of physical —rather than half flat— gravitational fields in the
twistor program, mechanisms for breaking of supersymmetryand dimensional reduction in string
theory, and issues of space-time covariance in the canonical approach. In this sub-section, I will
focus on the second type of issues by recalling some of the long standing issues thatanysatisfac-
tory quantum theory of gravity should address.

• The Big-Bang and other singularities: It is widely believed that the prediction of a singular-
ity, such as the big-bang of classical general relativity, is primarily a signal that the physical theory
has been pushed beyond the domain of its validity. A key question to any quantum gravity theory,
then, is: What replaces the big-bang? Are the classical geometry and the continuum picture only
approximations, analogous to the ‘mean (magnetization) field’ of ferro-magnets? If so, what are
the microscopic constituents? What is the space-time analog of a Heisenberg quantum model of a
ferro-magnet? When formulated in terms of these fundamental constituents, is the evolution of the
quantumstate of the universe free of singularities? General relativity predicts that the space-time
curvature must grow unboundedly as we approach the big-bangor the big-crunch but we expect the
quantum effects, ignored by general relativity, to intervene, making quantum gravity indispensable
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before infinite curvatures are reached. If so, what is the upper bound on curvature? How close
to the singularity can we ‘trust’ classical general relativity? What can we say about the ‘initial
conditions’, i.e., the quantum state of geometry and matterthat correctly describes the big-bang?
If they have to be imposed externally, is there aphysicalguiding principle?

• Black holes:In the early seventies, using imaginative thought experiments, Bekenstein ar-
gued that black holes must carry an entropy proportional to their area [12, 34, 41]. About the same
time, Bardeen, Carter and Hawking (BCH) showed that black holes in equilibrium obey two basic
laws, which have the same form as the zeroth and the first laws of thermodynamics, provided one
equates the black hole surface gravityκ to some multiple of the temperatureT in thermodynamics
and the horizon areaahor to a corresponding multiple of the entropyS[12, 34, 41]. However, at first
this similarity was thought to be only a formal analogy because the BCH analysis was based on
classicalgeneral relativity and simple dimensional considerationsshow that the proportionality fac-
tors must involve Planck’s constanth̄. Two years later, using quantum field theory on a black hole
background space-time, Hawking showed that black holes in fact radiate quantum mechanically as
though they are black bodies at temperatureT = h̄κ/2π [12, 27]. Using the analogy with the first
law, one can then conclude that the black hole entropy shouldbe given bySBH = ahor/4Gh̄. This
conclusion is striking and deep because it brings together the three pillars of fundamental physics
—general relativity, quantum theory and statistical mechanics. However, the argument itself is a
rather hodge-podge mixture of classical and semi-classical ideas, reminiscent of the Bohr theory of
atom. A natural question then is: what is the analog of the more fundamental, Pauli-Schrödinger
theory of the Hydrogen atom? More precisely, what is the statistical mechanical origin of black
hole entropy? What is the nature of a quantum black hole and what is the interplay between the
quantum degrees of freedom responsible for entropy and the exterior curved geometry? Can one
derive the Hawking effect from first principles of quantum gravity? Is there an imprint of the
classical singularity on the final quantum description, e.g., through ‘information loss’?

• Planck scale physics and the low energy world:In general relativity, there is no background
metric, no inert stage on which dynamics unfolds. Geometry itself is dynamical. Therefore, as
indicated above, one expects that a fully satisfactory quantum gravity theory would also be free
of a background space-time geometry. However, of necessity, a background independent descrip-
tion must use physical concepts and mathematical tools thatare quite different from those of the
familiar, low energy physics. A major challenge then is to show that this low energy description
does arise from the pristine, Planckian world in an appropriate sense, bridging the vast gap of some
16 orders of magnitude in the energy scale. In this ‘top-down’ approach, does the fundamental
theory admit a ‘sufficient number’ of semi-classical states? Do these semi-classical sectors provide
enough of a background geometry to anchor low energy physics? Can one recover the familiar
description? If the answers to these questions are in the affirmative, can one pin point why the stan-
dard ‘bottom-up’ perturbative approach fails? That is, what is the essential feature which makes the
fundamental description mathematically coherent but is absent in the standard perturbative quan-
tum gravity?

There are of course many more challenges: adequacy of standard quantum mechanics, the
issue of time, of measurement theory and the associated questions of interpretation of the quantum
framework, the issue of diffeomorphism invariant observables and practical methods of computing
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their properties, convenient ways of computing time evolution and S-matrices, exploration of the
role of topology and topology change, etc, etc. In loop quantum gravity described in the rest of this
chapter, one adopts the view that the three issues discussedin detail are more basic from a physical
viewpoint because they are rooted in general conceptual questions that are largely independent of
the specific approach being pursued. Indeed they have been with us longer than any of the current
leading approaches.

2. Loop quantum gravity

In this section, I will summarize the overall viewpoint, achievements, challenges and oppor-
tunities underlying loop quantum gravity. The emphasis is on structural and conceptual issues. I
would like to emphasize that this isnot a comprehensive review. The choice of the material was
guided by two principles: i) Choosing illustrative topics to provide glimpses of directions that have
been and are being pursued; and ii) Avoiding issues that I do not understand well or those would
need detours to explain strengths and weaknesses.

Detailed treatments of the subject can be found in lectures by Giesel, Sahlmann, Rovelli and
Singh in these proceedings and even more complete and more technical accounts in [38, 39, 45] and
references therein. (The development of the subject can be seen by following older monographs
[22, 26, 28].) For a treatment at a more elementary (i.e. advanced undergraduate) level, see [53].

2.1 Viewpoint

In loop quantum gravity, one takes the central lesson of general relativity seriously: gravityis
geometry whence, in a fundamental quantum gravity theory, there should be no background metric.
Geometry and matter shouldbothbe ‘born quantum mechanically’. Thus, in contrast to approaches
developed by particle physicists, one does not begin with quantum matter on a background geom-
etry and use perturbation theory to incorporate quantum effects of gravity. Thereis a manifold but
no metric, or indeed any other physical fields, in the background.9

In classical gravity, Riemannian geometry provides the appropriate mathematical language to
formulate the physical, kinematical notions as well as the final dynamical equations. This role is
now taken byquantumRiemannian geometry. In the classical domain, general relativity stands out
as the best available theory of gravity, some of whose predictions have been tested to an amazing
degree of accuracy, surpassing even the legendary tests of quantum electrodynamics. Therefore,
it is natural to ask:Does quantum general relativity, coupled to suitable matter (or supergravity,
its supersymmetric generalization)exist as consistent theories non-perturbatively?There is no
implication that such a theory would be the final, complete description of Nature. Nonetheless, this
is a fascinating and important open question in its own right.

As explained in section 1.1, in particle physics circles theanswer is often assumed to be in
the negative, not because there is concrete evidence against non-perturbative quantum gravity, but
because of the analogy to the theory of weak interactions. There, one first had a 4-point interaction

9In 2+1 dimensions, although one begins in a completely analogous fashion, in the final picture one can get rid
of the background manifold as well. Thus, the fundamental theory can be formulated combinatorially [22, 23]. While
some steps have been taken to achieve this in 3+1 dimensions,by considering ‘abstract’ spin networks in the canonical
approach and 2-complexes in spin foams, one still needs a more complete handle on the underlying mathematics.
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model due to Fermi which works quite well at low energies but which fails to be renormalizable.
Progress occurred not by looking for non-perturbative formulations of the Fermi model but by
replacing the model by the Glashow-Salam-Weinberg renormalizable theory of electro-weak inter-
actions, in which the 4-point interaction is replaced byW± andZ propagators. Therefore, it is often
assumed that perturbative non-renormalizability of quantum general relativity points in a similar
direction. However this argument overlooks the crucial fact that, in the case of general relativity,
there is a qualitatively new element. Perturbative treatments pre-suppose that the space-time can be
assumed to be a continuumat all scalesof interest to physics under consideration. This assumption
is safe for weak interactions. In the gravitational case, onthe other hand, the scale of interest isthe
Planck lengthℓPl and there is no physical basis to pre-suppose that the continuum picture should
be valid down to that scale. The failure of the standard perturbative treatments may largely be due
to this grossly incorrect assumption and a non-perturbative treatment which correctly incorporates
the physical micro-structure of geometry may well be free ofthese inconsistencies.

Are there any situations, outside loop quantum gravity, where such physical expectations are
borne out in detail mathematically? The answer is in the affirmative. There exist quantum field
theories (such as the Gross-Neveu model in three dimensions) in which the standard perturbation
expansion is not renormalizable although the theory isexactly soluble! Failure of the standard
perturbation expansion can occur because one insists on perturbing around the trivial, Gaussian
point rather than the more physical, non-trivial fixed pointof the renormalization group flow. In-
terestingly, thanks to recent work by Reuter, Lauscher, Percacci, Perini and others there is now
non-trivial and growing evidence that situation may be similar in Euclidean quantum gravity. Im-
pressive calculations have shown that pure Einstein theorymay also admit a non-trivial fixed point
[47, 52]. Furthermore, the requirement that the fixed point should continue to exist in presence of
matter constrains the couplings in non-trivial and interesting ways [42].

However, as indicated in the Introduction, even if quantum general relativity did exist as a
mathematically consistent theory, there is no a priori reason to assume that it would be the ‘final’
theory of all known physics. In particular, as is the case with classical general relativity, while
requirements of background independence and general covariance do restrict the form of interac-
tions between gravity and matter fields and among matter fields themselves, the theory would not
have a built-in principle whichdeterminesthese interactions. Put differently, such a theory would
not be a satisfactory candidate for unification of all known forces. However, just as general rel-
ativity has had powerful implications in spite of this limitation in the classical domain, quantum
general relativity should have qualitatively new predictions, pushing further the existing frontiers
of physics. Indeed, unification does not appear to be an essential criterion for usefulness of a theory
even in other interactions. QCD, for example, is a powerful theory even though it does not unify
strong interactions with electro-weak ones. Furthermore,the fact that we do not yet have a viable
candidate for the grand unified theory does not make QCD any less useful.

2.2 Advances

From the historical and conceptual perspectives of section1, loop quantum gravity has had
several successes. Thanks to the systematic development ofquantum geometry, several of the
roadblocks encountered by quantum geometrodynamics were removed. Functional analytic issues
related to the presence of an infinite number of degrees of freedom are now faced squarely. Inte-
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grals on infinite dimensional spaces are rigorously defined and the required operators have been
systematically constructed. Thanks to this high level of mathematical precision, the Hamiltonian
and the spin foam programs in loop quantum gravity have leaped past the ‘formal’ stage of devel-
opment. More importantly, although key issues related to quantum dynamics still remain, it has
been possible to use the parts of the program that are alreadywell established to extract useful and
highly non-trivial physical predictions. In particular, some of the long standing issues about the na-
ture of the big-bang, physics of the very early universe, properties of quantum black holes, giving
meaning to the n-point functions in a background independent framework have been resolved. In
this sub-section, I will further clarify some conceptual issues and discuss some recent advances.

• Quantum geometry.The specific quantum Riemannian geometry underlying loop quantum
gravity predicts that eigenvalues of geometric operators —such as areas of 2-surfaces and volumes
of 3-dimensional regions— are discrete. Thus, continuum underlying general relativity is only a
coarse grained approximation. What is the directphysicalsignificance of this specific discreteness?
Recall first that, in the classical theory, differential geometry simply provides us with formulas to
compute areas of surfaces and volumes of regions in a Riemannian manifold. To turn these quanti-
ties into physical observables of general relativity, one has to define the surfaces and regionsopera-
tionally, e.g. by focusing on surfaces of black holes or regions in which matter fields are non-zero.
Once this is done, one can simply use the formulas supplied bydifferential geometry to calculate
values of these observable. The situation is rather similarin loop quantum gravity. For instance,
the area of the isolated horizon is a Dirac observable in the classical theory and the application of
the quantum geometry area formula tothis surface leads to physical results. In 2+1 dimensions,
Freidel, Noui and Perez have introduced point particles coupled to gravity. The physical distance
between these particles is again a Dirac observable. When used in this context, the spectrum of
the length operator has direct physical meaning. In all these situations, the operators and their
eigenvalues correspond to the ‘proper’ lengths, areas and volumes of physical objects, measured in
the rest frames. Finally sometimes questions are raised about compatibility between discreteness
of these eigenvalues and Lorentz invariance. As was emphasized by Rovelli and Speziale, there is
no tension whatsoever: it suffices to recall that discreteness of eigenvalues of the angular momen-
tum operatorĴz of non-relativistic quantum mechanics is perfectly compatible with the rotational
invariance of that theory.

• Quantum cosmology.In Friedmann-Lemaitre-Robertson-Walker (FLRW) models, loop quan-
tum gravity has resolved the long-standing physical problem of the fate of the big-bang in quantum
gravity [54]. Work by Bojowald, Ashtekar, Pawlowski, Singhand others has shown that non-
perturbative effects originating in quantum geometry create an effective repulsive force which is
negligible when the curvature falls significantly below thePlanck scale but rises very quickly and
dramatically in the deep Planck regime to overcome the classical gravitational attraction, thereby
replacing the big-bang by a quantum bounce. The same is true with the big-crunch singularity in
the closed models. More generally, using effective equations, Singh has shown that these quantum
geometry effects also resolveall strong curvature singularities in homogeneous isotropic models
where matter sources have an equation of state of the typep = p(ρ), including the exotic singular-
ities such as the big-rip. (These can occur with non-standard matter, still described by an equation
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of statep = p(ρ)).
A proper treatment of anisotropies (i.e. Bianchi models) has long been a highly non-trivial

issue in general bouncing scenarios because the anisotropic shears dominate in Einstein’s equations
in the contracting phase before the bounce, diverging (as 1/a6 which is) faster than, say, the dust
or radiation matter density. Therefore, if anisotropies are added even as a perturbation to a FLRW
model, they tend to grow unboundedly. What is the situation in loop quantum cosmology? The
issue turned out to be quite subtle and there were some oversights at first. But a careful examination
by Ashtekar, Wilson-Ewing and others has shown that the singularity is again resolved: any time a
shear scalar —a potential for the Weyl curvature— or matter density approaches the Planck regime,
the repulsive force of quantum geometry grows to dilute it. As in the isotropic case, effective
equations can again be used to gain physical insights. In particular they show that the matter
density is again bounded above. Singularity resolution in these Bianchi models is also important
from a more general consideration. There is a conjecture dueto Belinskii, Khalatnikov and Lifshitz
(BKL) that says that as one approaches a space-like singularity in classical general relativity, ‘the
terms containing time derivatives dominate over those containing spatial derivatives, so that the
dynamics of the gravitational field at any one spatial point are better and better approximated by
the dynamics of Bianchi models’. By now considerable evidence has accumulated in support of
the BKL conjecture and it is widely believed to be essentially correct. One might therefore hope
that the singularity resolution in the Bianchi models in loop quantum cosmology has opened a door
to showing that all strong curvature, space-like singularities are resolved by the quantum geometry
effects underlying loop quantum gravity.

Finally, the simplest type of (non-linear) inhomogeneous models —the 1-polarization Gowdy
space-times— have also been analyzed in detail. These models were studied extensively in the early
quantum gravity literature, prior to the advent of LQC. In all cases the singularity had persisted. A
systematic study in the context of loop quantum cosmology was initiated by Mena, Garay, Martin-
Benito, Vehlino and others by making an astute use of the factthat the homogeneous modes of
the model correspond to a Bianchi I space-time. Once again, the underlying quantum geometry
resolves the big-bang singularity.

I will conclude with the discussion of a conceptual point. Ingeneral relativity, non-singular,
bouncing models can be and have been constructed by using matter fields that violate energy con-
ditions. In loop quantum cosmology, by contrast, matter fields satisfy all energy conditions. How
can the theory then evade singularity theorems of Penrose, Hawking and others? It does so be-
cause the quantum geometry effects modify the geometric, left hand side of Einstein’s equations,
whence these theorems are inapplicable. However there are more recent singularity theorems due
to Borde, Guth and Vilenkin which donot refer to field equations at all. How are these evaded?
These theorems were motivated by inflationary scenario and therefore assume that the universe bas
been eternally undergoing an expansion. In loop quantum cosmology, even with an inflationary
potential, the pre-bounce branch is contracting. Thus again the singularity is avoided because the
solutions violate a key assumption of these theorems as well.

• Quantum Horizons.Loop quantum cosmology illuminates dynamical ramifications of quan-
tum geometry but within the context of mini and midi superspaces where an infinite number of
degrees of freedom are frozen. The application to the black hole entropy problem is complemen-
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tary in that one considers the full theory but probes consequences of quantum geometry which are
not sensitive to full quantum dynamics. I will discuss this topic in a little more detail because it
was not covered in any of the main lectures at this school.

As explained in the Introduction, since mid-seventies, a key question in the subject has been:
What is the statistical mechanical origin of the entropySBH = (ahor/4ℓ2

Pl) of large black holes?
What are the microscopic degrees of freedom that account forthis entropy? This relation implies
that a solar mass black hole must have exp1077 quantum states, a number that ishugeeven by the
standards of statistical mechanics. Where do all these states reside? To answer these questions,
in the early 1990s Wheeler had suggested the following heuristic picture, which he christened ‘It
from Bit’. Divide the black hole horizon into elementary cells, each with one Planck unit of area,
ℓ2

Pl and assign to each cell two microstates, or one ‘Bit’. Then the total number of statesN is given
by N = 2n wheren = (ahor/ℓ

2
Pl) is the number of elementary cells, whence entropy is given by

S= lnN ∼ ahor. Thus, apart from a numerical coefficient, the entropy (‘It’) is accounted for by
assigning two states (‘Bit’) to each elementary cell. This qualitative picture is simple and attractive.
But can these heuristic ideas be supported by a systematic analysis from first principles?

Ashtekar, Baez, Corichi and Krasnov used quantum geometry to provide such an analysis. The
first step was to analyze the structure of ‘isolated horizons’ in general relativity [41] and use it in
conjunction to quantum geometry to define an isolatedquantum horizon. To probe its properties,
one has to combine the isolated horizon boundary conditionsfrom classical general relativity and
quantum Riemannian geometry of loop quantum gravity with the Chern-Simons theory on a punc-
tured sphere, the theory of a non-commutative torus and subtle considerations involving mapping
class groups. This detailed analysis showed that, while qualitative features of Wheeler’s picture are
borne out, geometry of a quantum horizon is much more subtle.First, while Wheeler’s ideas hold
for any 2-surface, the loop quantum gravity calculation requires a quantum horizon. Second, basic
features of both of Wheeler’s arguments undergo a change: i)the elementary cells do not have
Planck area; values of their area are dictated by the spectrum,∼

√

j( j +1), of the area operator in
loop quantum gravity, wherej is a half integer; ii) individual cells carry much more than just one
‘bit’ of information; the number of states associated with any one cell is 2j +1.

Nonetheless, a careful counting of states by Lewandowski, Domagala, Meissner and others
has shown that the number of microstates is again proportional to the area of the isolated hori-
zon. To get the exact numerical factor of 1/4, one has to fix the Barbero-Immirzi parameter of
loop quantum gravity to a specific value. One can use a specifictype of isolated horizon for this
—e.g. the spherically symmetric one with zero charge, or thecosmological one in the de Sitter
space-time. Once the value of the parameter is fixed, one getsthe correct numerical coefficient
in the leading order contribution for isolated horizons with arbitrary mass and angular momentum
moments, charge, etc. (One also obtains a precise logarithmic sub-leading correction, whose co-
efficient does not depend on the Barbero-Immirzi parameter.) The final result has two significant
differences with respect to the string theory calculations: i) one does not require near-extremality;
one can handle ordinary 4-dimensional black holes of directastrophysical interest which may be
distorted and/or rotating; and, ii) one can simultaneouslyincorporate cosmological horizons for
which thermodynamics considerations also apply [12].

Why does this value of the Barbero-Immirzi parameter not depend on non-gravitational charges?
This important property can be traced back to a key consequence of the isolated horizon boundary
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conditions: detailed calculations show that only the gravitational part of the symplectic structure
has a surface term at the horizon; the matter symplectic structures have only volume terms. (Fur-
thermore, the gravitational surface term is insensitive tothe value of the cosmological constant.)
Consequently, there are no independent surface quantum states associated with matter. This pro-
vides a natural explanation of the fact that the Hawking-Bekenstein entropy depends only on the
horizon area and is independent of electro-magnetic (or other) charges. (For more detailed accounts
of these results, see [38, 41].)

Over the last three years there has been a resurgence of interest in the subject, thanks to the
impressive use of number theory techniques by Barbero, Villasenor, Agullo, Borja, Diaz-Polo and
to sharpen and very significantly extend the counting of horizon states. These techniques have
opened new avenues to further explore the microstates of thequantum horizon geometry through
contributions by Perez, Engle, Noui, Pranzetti, Ghosh, Mitra, Kaul, Majumdar and others.

To summarize, as in other approaches to black hole entropy, concrete progress could be made
in loop quantum gravity because: i) the analysis does not require detailed knowledge of how quan-
tum dynamics is implemented infull theory, and, ii) restriction to large black holes implies that
the Hawking radiation is negligible, whence the black hole surface can be modeled by an isolated
horizon [41]. The states responsible for entropy have a direct interpretation inspace-timeterms:
they refer to the geometry of the quantum, isolated horizon.

• Quantum Einstein’s equations in the canonical framework.The challenge of quantum dy-
namics in the full theory is to find solutions to the quantum constraint equations and endow these
physical states with the structure of an appropriate Hilbert space. The general consensus in the loop
quantum gravity community is that while the situation is well-understood for the Gauss and dif-
feomorphism constraints, it is far from being definitive forthe Hamiltonian constraint. Non-trivial
development due to Thiemann is that well-defined candidate operators representing the Hamilto-
nian constraint exist on the space of solutions to the Gauss and diffeomorphism constraints [45].
However there are several ambiguities [38] and, unfortunately, we do not understand the physical
meaning of choices made to resolve them. Detailed analysis in the limited context of loop quantum
cosmology has shown that choices which appear to be mathematically natural can nonetheless lead
to unacceptable physical consequences such as departures from general relativity in completely
tame situations with low curvature [54]. Therefore, much more work is needed in the full theory.

The current status can be summarized as follows. Four main avenues have been pursued to con-
struct and solve the quantum Hamiltonian constraint. The first is the ‘Master constraint program’
introduced by Thiemann [45]. The idea here is to avoid using an infinite number of Hamiltonian
constraintsS (N) =

∫

N(x)S (x)d3x, each smeared by a so-called ‘lapse function’N. Instead, one
squares the integrandS (x) itself in an appropriate sense and then integrates it on the 3-manifold
M. In simple examples, this procedure leads to physically viable quantum theories. However, in
loop quantum gravity the procedure does not remove any of theambiguities in the definition of
the Hamiltonian constraint. Rather, if the ambiguities areresolved, the principal strength of the
strategy lies in its potential to complete the last step in quantum dynamics: finding the physically
appropriate scalar product on physical states. The generalphilosophy is similar to that advocated
by John Klauder over the years in his approach to quantum gravity based on coherent states [36].
A second strategy to solve the quantum Hamiltonian constraint is due to Gambini, Pullin and their
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collaborators. It builds on their extensive work on the interplay between quantum gravity and knot
theory [28]. The more recent of these developments use the relatively new invariants ofintersect-
ing knots discovered by Vassiliev. This is a novel approach which furthermore has a potential of
enhancing the relation between topological field theories and quantum gravity. As our knowledge
of invariants of intersecting knots deepens, this approachcould provide increasingly significant in-
sights. In particular, it has the potential of leading to a formulation of quantum gravity which does
not refer even to a background manifold (see footnote 9).

The third approach comes from spin-foam models [35, 39] which, as discussed below, provide
a path integral approach to quantum gravity. Over the last four years, there has been extensive
work in this area, discussed in the articles by Rovelli, Speziale, Baratin, Perini, Fairbairn, Bianchi,
and Kaminski in this volume. Transition amplitudes from path integrals can be used to restrict the
choice of the Hamiltonian constraint operator in the canonical theory. This is a very promising
direction and Freidel, Noui, Perez, Rovelli and others haveanalyzed this issue especially in 2+1
dimensions. The idea in the fourth approach, due to Varadarajan, Laddha, Henderson, Tomlin and
others, is to use insights gained from the analysis of parameterized field theories. Now the emphasis
is on drastically reducing the large freedom in the choice ofthe definition of the Hamiltonian
constraint by requiring that the quantum constraint algebra closes, so that one is assured that there
is no obstruction to obtaining a large number ofsimultaneoussolutions to all constraints. Because
the Poisson bracket between two Hamiltonian constraints isa diffeomorphism constraint, one has
to find a viable expression of the operator generatinginfinitesimaldiffeomorphisms. (Until this
work, the focus was on the action only offinite diffeomorphisms in the kinematical setup.) Very
recently, this program has witnessed promising advances. The Hamiltonian constraint one is led to
define shares qualitative features of ‘improved dynamics’ of loop quantum cosmology that lies at
the foundation of the most significant advances in that area.

In this discussion I have focused primarily on pure gravity.In the mid 1990s Brown, Kuchař
and Romano had introduced frameworks in which matter fields can be used as ‘rods and clocks’
thereby providing a natural ‘de-parametrization’ of the constraints in the classical theory. Giesel,
Thiemann, Tambornino, Domagala, Kaminski, Lewandowski, Husain and Pawlowski have used
these considerations as the point of departure to constructloop quantum gravity theories for these
systems. Deparametrization greatly facilitates the task of finding Dirac observables and makes it
easier to interpret the quantum theory. However, as in the Master Constraint program, issues as-
sociated with quantization ambiguities still remain and the domain on which matter fields serve
as good clocks and rods still needs to be clarified. Further details can be found in the lectures by
Giesel and Salhmann.

• Spin foams:Four different avenues to quantum gravity have been used to arrive at spin-foam
models (SFMs). The fact that ideas from seemingly unrelateddirections converge to the same type
of structures and models has provided a strong impetus to thespin foam program. Indeed, currently
this is the most active area on the mathematical physics sideof loop quantum gravity.

The first avenue is the Hamiltonian approach to loop quantum gravity [38, 39, 45]. By mimick-
ing the procedure that led Feynman [1] to a sum over historiesformulation of quantum mechanics,
Rovelli and Reisenberger proposed a space-time formulation of this theory. This work launched
the spin-foam program. The second route stems from the fact that the starting point in canonical
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loop quantum gravity is a rewriting of classical general relativity that emphasizes connections over
metrics [38]. Therefore in the passage to quantum theory it is natural to begin with the path integral
formulation of appropriate gauge theories. A particularlynatural candidate is the topological B-F
theory because in 3 space-time dimensions it is equivalent to Einstein gravity, and in higher dimen-
sions general relativity can be regarded as a constrained BFtheory [32, 35]. The well-controlled
path integral formulation of the BF theory provided the second avenue and led to the SFM of Barrett
and Crane.

The third route comes from the Ponzano-Regge model of 3-dimensional gravity that inspired
Regge calculus in higher dimensions. Here one begins with a simplicial decomposition of the
space-time manifold, describes its discrete Riemannian geometry using edge lengths and deficit
angles and constructs a path integral in terms of them. If oneuses holonomies and discrete areas of
loop quantum gravity in place of edge lengths, one is again led to a spin foam. These three routes
are inspired by various aspects of general relativity. The fourth avenue starts from approaches to
quantum gravity in which gravity is to emerge from a more fundamental theory based on abstract
structures that, to begin with, have nothing to do with space-time geometry. Examples are matrix
models for 2-dimensional gravity and their extension to 3-dimensions —the Boulatov model —
where the basic object is a field on a group manifold rather than a matrix. The Boulatov model was
further generalized to a group field theory tailored to 4-dimensional gravity [39, 48]. The perturba-
tive expansion of this group field theory turned out be very closely related to ‘vertex expansions’
in SFMs. Thus the SFMs lie at a junction where four apparentlydistinct paths to quantum gravity
meet. Through contributions of many researchers it has now become an active research area (see,
e.g., [35, 39]).

Four years ago, two groups, Engle-Livine-Pereira-Rovelli, and Freidel-Krasnov, put forward
precise proposals for the sum over quantum geometries that could provide detailed dynamics in
loop quantum gravity. The motivations were different but for the physically interesting values of
the Babero-Immirzi parameter (selected, e.g., by the blackhole entropy considerations), the two
proposals agree. This is an improvement over the earlier Barrett-Crane model which cured some
of the problems faced by that model. Perhaps more importantly, thanks to the generalizations by
Kaminski, Kisielowski and Lewandowski, the canonical and path integral approaches have been
brought closer to one another: they use the same kinematics.However, there does not yet exit a
systematic ‘derivation’ leading to this proposal startingfrom classical general relativity, say, along
the lines used in textbooks to arrive at the path integral formulation of gauge theories. Nonetheless
the program has attracted a large number of researchers because: i) there do exist semi-heuristic
considerations motivating the passage; ii) as I indicated above, it can be arrived at from four dif-
ferent avenues; and iii) Detailed asymptotic analysis by Barrett, Hellmann, Dowdall, Fairbairn,
Pereira and others strongly indicates that these models have the correct classical limit; and, iv)
Because of the use of quantum geometry —more precisely because there is a non-zero area gap—
this sum over quantum geometries has no ultra-violet divergences. More recently, Fairbairn, Meus-
berger, Han and others have extended these considerations to include a cosmological constant by
a natural use of quantum groups. It is then argued that, for a given 2-simplex, the sum is also
infra-red finite.

However, the issue of whether to sum over distinct 2-complexes or to take an appropriate ‘con-
tinuum limit’ is still debated and it is not known whether thefinal result would be finite in either
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case.10 In the cosmological mini-superspaces, the situation is well-controlled: under a single as-
sumption that a sum and an integral can be interchanged, the analog of the sum over 2-complexes
(called the vertex expansion in the spin foam literature) has been shown to converge, and further-
more, converge to the ‘correct’ result that is already knownfrom a well-established Hamiltonian
theory [54].

A much more detailed discussion of spin foams can be found in the lectures by Rovelli,
Speziale, Baratin, Perini, Fairbairn, Bianchi, and Kaminski at this school.

2.3 Challenges and Opportunities

Developments summarized so far should suffice to provide a sense of the extent to which
advances in loop quantum gravity already provide an avenue to a non-perturbative and background
independent formulation of quantum gravity. I will conclude by providing an illustrative list of
the open issues. Some of these are currently driving the fieldwhile others provide challenges and
opportunities for further work. This discussion assumes that the reader is familiar with basic ideas
behind current research in loop quantum gravity.

2.3.1 Foundations

• Hamiltonian Theory:In section 2.2 I outlined four strategies that are being usedto extract
quantum dynamics. I will now sketch another avenue, inspired in part by the success of loop quan-
tum cosmology, that has been proposed by Domagala, Giesel, Kaminski and Lewandowski. In loop
quantum cosmology, a massless scalar field often serves as an‘internal clock’ with respect to which
observables of physical interest evolve [54]. The idea is totake over this strategy to full quantum
gravity by focusing on general relativity coupled with a massless scalar field. This is a particularly
interesting system because, already in the 1990s, Kuchař and Romano showed that one can rear-
range the constraints of this system so that they form a true Lie algebra, where theHamiltonian
constraints Poisson commute with each other on the entire phase space. Interestingly, under seem-
ingly mild assumptions one can show that solutions of this system admit space-like foliations on
whichφ is constant. Consequently, even though the system has infinitely many degrees of freedom,
as in LQCone can useφ as a relational time variable. WithT3 spatial topology for definiteness,
one can decompose all fields into homogeneous andpurely inhomogeneous modes. If one were
to truncate the system by setting the inhomogeneous modes tozero, the resulting quantum theory
would be precisely the loop quantum cosmology of Bianchi I models that has been analyzed in de-
tail by Ashtekar and Wilson-Ewing. One might imagine incorporating the inhomogeneous modes
using the ‘hybrid’ quantization scheme that has been successfully used in the Gowdy models by
Mena, Martin-Benito, Pawlowski and others, although it will have to be non-trivially generalized
to handle the fact that there are no Killing fields. As in the Gowdy models, this will likely involve
some gauge fixing of the diffeomorphism and Gauss constraints. Even if these gauge fixing strate-
gies do not work globally on the full phase space, one should still obtain a quantum theory tailored
to a ‘non-linear neighborhood’ of FLRW or Bianchi I space-times. Finally, effective equations for
this system would also provide valuable insights into the singularity resolution (which we expect to

10Mathematically, this situation is somewhat reminiscent toperturbative super-string theory, where there is evidence
that each term in the expansion is finite but the sum is not controlled.
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persist in an appropriate, well-defined sense). In particular, one would be able to compare and con-
trast their prediction with the simple BKL behavior near thegeneral relativistic singularity, found
by Andersson and Rendall for this system. More generally, this analysis will enable one to place
loop quantum cosmology in the setting of full loop quantum gravity.

A second important open issue is to find restrictions on matter fields and their couplings to
gravity for which this non-perturbative quantization can be carried out to a satisfactory conclu-
sion. Supersymmetry, for example, is known to allow only very specific matter content. Recent
work by Bodendorfer, Thiemann and Thurn has opened a fresh window for this analysis. A second
possibility is suggested by the analysis of the closure of the constraint algebra in quantum theory.
When it is extended to allow for matter couplings, the recentwork by Varadarajan, Laddha, and
Tomlin referred to in section2.2 could provide a promising approach to explore this issue in detail.
Finally, as mentioned in section 1.1, the renormalization group approach has provided interesting
hints. Specifically, Reuter et al have presented significantevidence for a non-trivial fixed point for
vacuum general relativity in 4 dimensions [47]. When mattersources are included, it continues
to exist only when the matter content and couplings are suitably restricted. For scalar fields, in
particular, Percacci and Perini have found that polynomialcouplings (beyond the quadratic term
in the action) are ruled out, an intriguing result that may ‘explain’ the triviality of such theories in
Minkowski space-times [42]. Are there similar constraintscoming from loop quantum gravity?

• Spin foams:As discussed in section 2.2, the spin foam program has made significant ad-
vances over the last four years. Results on the classical limit and finiteness of the sum over histories
for a fixed 2-complex are especially encouraging. Thereforeit is now appropriate to invest time
and effort on key foundational issues.

First, we need a better understanding of the physical meaning of the ‘vertex expansion’ that
results when one sums over arbitrary 2-complexes. In particular, is there a systematic physical
approximation that lets us terminate the sum after a finite number of terms? In group field theory
each term is multiplied by a power of the coupling constant [39, 48] but the physical meaning of
this coupling constant in space-time terms is not known. Analysis by Ashtekar, Campiglia and
Henderson in the cosmological context bears out an early suggestion of Oriti that the coupling
constant is related to the cosmological constant. In the full theory, Fairbairn, Meusberger, Han
and others have shown that the cosmological constant can be incorporated using quantum groups
(which also makes the spin foam sum infrared finite for a fixed 2-complex). It is then natural to ask
if there is a precise sense in interpreting the vertex expansion as a perturbation series in a parameter
physically related to the cosmological constant also in thefull theory.

Second, as I mentioned in section 2.2, the issue of whether one should actually sum over
various 2-complexes (i.e., add up all terms in the vertex expansion), or take an appropriately defined
continuum limit is still open. Rovelli and Smerlak have argued that there is a precise sense in which
the two procedures coincide. But so far there is no control over the sum and experts in rigorous field
theory have expressed the concern that, unless a new principle is invoked, the number of terms may
grow uncontrollably as one increases the number of vertices. Recent work on group field theory by
Oriti, Rivasseau, Gurau, Krajewski and others may help streamline this analysis and provide the
necessary mathematical control.

Finally, because the EPRL and FK models are motivated from the BF theory, they inherit
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certain (‘Plebanski’) sectors which classically do not correspond to general relativity. In addition,
analysis of cosmological spin foams re-enforces an early idea due to Oriti that one should only sum
over ‘time oriented’ quantum geometries. Some of these issues are now being analyzed in detail
by Engle and others. But more work is needed on these basic conceptual issues.

• Low energy physics:In low energy physics one uses quantum field theory on given back-
ground space-times. Therefore one is naturally led to ask ifthis theory can be arrived at by starting
from loop quantum gravity and making systematic approximations. Here, a number of interesting
challenges appear to be within reach. Fock states have been isolated in the polymer framework
[38] and elements of quantum field theory on quantum geometryhave been introduced [45]. These
developments lead to concrete questions. For example, in quantum field theory in flat space-times,
the Hamiltonian and other operators are regularized through normal ordering. For quantum field
theory on quantum geometry, on the other hand, the Hamiltonians are expected to be manifestly
finite [45, 38]. Can one then show that, in a suitable approximation, normal ordered operators in
the Minkowski continuum arise naturally from these finite operators? Can one ‘explain’ why the
so-called Hadamard states of quantum field theory in curved space-times are special? These con-
siderations could also provide valuable hints for the construction of viable semi-classical states of
quantum geometry.

Since quantum field theory in FLRW space-times plays such an important role in the physics
of the early universe, it is especially important to know if can be systematically derived from loop
quantum gravity. A number of obstacles immediately come to mind. In the standard treatment of
quantum fields on cosmological space-times, one typically works with conformal or proper time,
makes a heavy use of the causal structure made available by the fixed background space-time, and
discusses dynamics as an unitary evolution in the chosen time variable. In quantum geometry state
of loop quantum cosmology, none of these structures are available. Even in the ‘deparameterized
picture’ it is ascalar fieldthat plays the role of internal time; proper and conformal times are at
best operators. Even when the quantum state is sharply peaked on an effective solution, we have
only a probability distribution for various space-time geometries; we do not have a single, well-
defined, classical causal structure. Finally, in loop quantum gravity, dynamics is teased out of the
constraint while in quantum field theory in curved space-times it is dictated by a Hamiltonian.
These obstacles seem formidable at first, Ashtekar, Kaminski and Lewandowski have shown that
they can be overcome if one works with spatially compact topology and focuses just on a finite
number of modes of the test field. The first assumption frees one from infra-red issues which can be
faced later while the second restriction was motivated by the fact that, in the inflationary scenario,
only a finite number of modes of perturbations are relevant toobservations. It is important to
remove these restrictions and use the resulting framework to analyze the questions on the quantum
gravity origin of Hadamard states and of the adiabatic regularization procedure routinely used in
cosmology.

2.3.2 Applications

• The very early universe:Because the initial motivations for inflation are not as strong as they
are often portrayed to be, several prominent relativists were put off by the idea. As a consequence,
recent developments in the inflationary paradigm have not drawn due attention in general relativity

22



P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
0
1

Introduction to LQG Abhay Ashtekar

circles. In my view, there is a compelling case to take the paradigm seriously: it predicted the main
features of inhomogeneities in the cosmic microwave background (CMB) which were subsequently
observed and which serve as seeds for structure formation.

Let me first explain this point in some detail. Note first that one analyzes CMB inhomo-
geneities in terms of their Fourier modes and observationally relevant wave numbers are in a finite
range, say∆k. Using this fact, we can write down the four assumptions on which the inflationary
scenario is based:
1) Some time in its very early history, the universe underwent a phase of accelerated expansion
during which the Hubble parameter H was nearly constant.
2) During this phase the universe is well-described by a FLRWbackground space-time together
with linear perturbations.
3) A few e-foldings before the longest wave length mode in thefamily ∆k under consideration
exited the Hubble radius, these Fourier modes of quantum fields describing perturbations were in
the Bunch-Davis vacuum.
4) Soon after a mode exited the Hubble radius, its quantum fluctuation can be regarded as a classical
perturbation and evolved via linearized Einstein’s equations.

Then QFT on FLRW space-times and classical general relativity imply the existence of tiny
inhomogeneities in CMB which have been seen by the 7 year WMAPdata. Numerical simulations
show that these seeds grow to yield the large scale structurethat is observed today. Although
the assumptions are by no means compelling, the overall economy of thought it is nonetheless
impressive. In particular, in this paradigm, the origin of the large scale structure of the universe
lies just in vacuum fluctuations! Therefore, it is of considerable interest to attempt to provide a
quantum gravity completion of this paradigm.

The issues that are left open by this standard paradigm are oftwo types: Particle Physics issues
and Quantum Gravity issues. Let me focus on the second for now:
1) Initial singularity: The paradigm assumes classical general relativity and theorems due to Borde,
Guth and Vilenkin then imply that space-time had an initial big bang singularity. For reasons dis-
cussed in section 1, this is an artifact of using general relativity in domains where it is not applica-
ble. Therefore, one needs a viable treatment of the Planck regime and the corresponding extension
of the inflationary paradigm.
2) Probability of inflation: In loop quantum cosmology, the big bang is replaced by a quantum
bounce. So it is natural to introduce initial conditions there. Will a generic homogeneous, isotropic
initial state for the background, when evolved, encounter aphase of slow roll inflation compatible
with the seven year WMAP data?
3) Trans-Planckian issues: In classical general relativity, if we evolve the Fourier modes of interest
back in time, they become trans-Planckian. We need a quantumfield theory onquantum cosmo-
logical space-timesto adequately handle them.
4) Observations: The question then is whether the initial quantum state at the bounce, when evolved
forward in time agrees sufficiently with the Bunch Davis vacuum at the onset of inflation so as not
to contradict the observations. More importantly, are there small deviations which could be ob-
served in future missions?

Recent work by Ashtekar, Sloan, Agullo, Nelson; Barreau, Cailleteau, Grain and Mielczarek;
and Fernandez-Mendez, Mena-Marugan,Olmedo and Vehlino, has made notable advances in fac-
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ing these questions [54] but there are ample opportunities for other research that will provide both
a viable quantum gravity completion of the inflationary paradigm and potentially observable pre-
dictions.

Finally, even if loop quantum gravity does offer a viable quantum gravity completion of the
inflationary paradigm, open issues related to particle physics will still remain. In particular: What
is the physical origin of the inflaton field? Of the potential one must use to get a sufficiently long
slow roll? Is there only one inflaton or many? If many, what aretheir interaction? What are the
couplings that produce the known particles as the inflaton oscillates around the minimum of the po-
tential at the end of inflation (the so-called ‘reheating’)?Therefore, it would be healthy to look also
for alternatives to inflation. Indeed, in the alternatives that have been advocated by Barndenberger
and others involve bouncing models and therefore have similarities with the general loop quan-
tum cosmology paradigm. Because the expansion of the universe from the bounce to the surface
of last scattering in the post-bounce branch ismuchsmaller than that in the inflationary scenario,
at the bounce, modes of direct interest to the CMB observations now have physical frequencies
muchbelow the Planck scale. Therefore, the trans-Planckian issue is avoided and quantum field
theory in curved space-times should be viable for these modes. This fact, coupled with the absence
of singularity, enables one to calculate a transfer matrix relating modes in the pre-bounce epoch to
those in the post-bounce epoch. Under suitable assumptions, Brandenberger and others have shown
that this relation gives rise to a nearly scale invariant spectrum of scalar and tensor modes in the
post-bounce phase. But the underlying premise in these calculations is that perturbations originate
in the distant past of the contracting branch where the geometry is nearly flat and quantum fields
representing perturbations are taken to be in their vacuum state. This idea that the entire evolution
from the distant past in the contracting phase to the bounce is well described by a homogeneous
model with small perturbations is not at all realistic. But since the general paradigm has several
attractive features, it would be of considerable interest to investigate whether loop quantum cos-
mology bounces allow similar alternatives to inflation without having to assume that non-linearities
can be neglected throughout the pre-bounce phase.

• Black hole evaporation: The issue of the final state:Black hole thermodynamics was initially
developed in the context of stationary black holes. Indeed,until relatively recently, there were very
few analytical results on dynamical black holes in classical general relativity. This changed with
the advent of dynamical horizons which provide the necessary analytical tools to extract physics
from numerical simulations of black hole formation and evaporation. It also led to some new
insights on the fundamental side. in particular, it was alsoshown that the first law can be extended
to these time-dependent situations and the leading term in the expression of the entropy is again
given byahor/4ℓ2

Pl [41]. Hawking radiation will cause the horizon of a large black hole to shrink
veryslowly, whence it is reasonable to expect that the description of the quantum horizon geometry
can be extended from isolated to dynamical horizons in this phase of the evaporation. The natural
question then is: Can one describe in detail the black hole evaporation process and shed light on
the issue of information loss?

The space-time diagram of the evaporating black hole, conjectured by Hawking, is shown in
the left-hand drawing in Fig. 1. It is based on two ingredients: i) Hawking’s original calculation of
black hole radiance, in the framework of quantum field theoryon afixedbackground space-time;
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Figure 1: Conjectured space-time diagrams of evaporating black holes in full quantum theory.
(a) Left figure: Standard paradigm, originally proposed by Hawking. Information is lost because part of the
incoming state onI − falls into the part of the future singularity that is assumedto persist in the full quantum
gravity theory. (b) Right figure: New paradigm motivated by the singularity resolution in LQC. What forms
and evaporates is a dynamical horizonH. Quantum space-time is larger and the incoming informationon
the full I − is adequately recovered on theI − of this larger space-time.

and ii) heuristics of back-reaction effects which suggest that the radius of the event horizon must
shrink to zero. It is generally argued that the semi-classical process depicted in this figure should
be reliable until the very late stages of evaporation when the black hole has shrunk to Planck size
and quantum gravity effects become important. Since it takes a very long time for a large black
hole to shrink to this size, one then argues that the quantum gravity effects during the last stages
of evaporation will not be sufficient to restore the correlations that have been lost due to thermal
radiation over such a long period. Thus there is loss of information. Intuitively, the lost information
is ‘absorbed’ by the ‘left-over piece’ of the final singularity which serves as a new boundary to
space-time.

However, loop quantum gravity considerations suggest thatthis argument is incorrect in two
respects. First, the semi-classical picture breaks down not just at the end point of evaporation but
in fact all along what is depicted as the final singularity. Using ideas from quantum cosmology,
the interior of the Schwarzschild horizon was analyzed in the context of loop quantum gravity
by Ashtekar, Bojowald, Modesto, Vandersloot and others. This analysis is not as complete or
refined as that in the cosmological context. But the qualitative conclusion that the singularity is
resolved due to quantum geometry effects is likely to be robust. If so, the space-time doesnot
have a singularity as its final boundary. The second limitation of this semi-classical picture is its
depiction of the event horizon. The notion of an event horizon is teleological and refers to the
global structure of space-time. Resolution of the singularity introduces a domain in which there
is no classical space-time, whence the notion ceases to be meaningful; it is simply ‘transcended’
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in quantum theory. Using these considerations Ashtekar andBojowald introduced a new paradigm
for black hole evaporation in loop quantum gravity, depicted in the right hand drawing of Fig. 1:
Now, it is the dynamical horizon that evaporates with emission of quantum radiation, and the initial
pure state evolves to a final pure state on the future null infinity of the extended space-time. Thus,
there is no information loss. In this paradigm, the semi-classical considerations would not simply
dismissed; they would be valid in certain space-time regions and under certain approximations. But
for fundamental conceptual issues, they would not be inadequate.

However, this is still only a paradigm and the main challengeis to develop it into a detailed
theory. Just as Wheeler’s ‘It from Bit’ ideas were transformed into a detailed theory of quantum
horizon geometry, it should be possible to construct a detailed theory of black hole evaporation
based on this paradigm. More recently, this paradigm was puton a firm footing by Ashtekar,
Taveras and Varadarajan in the case of 2-dimensional black holes first introduced by Callen, Gid-
dings, Harvey and Strominger. The model is interesting especially because its action and equa-
tions of motion closely mimic those governing 4-dimensional, spherically symmetric black holes
formed by the gravitational collapse of a scalar field. Ashtekar, Pretorius and Ramazanoglu have
used a combination of analytical and numerical methods to analyze the mean field approximation
in complete detail. It explicitly shows that some of the common assumptions regarding effects of
including back reaction, discussed in the last paragraph, are incorrect. This analysis further rein-
forces the paradigm of the figure on the right. It is thereforeof considerable interest to extend all
this analysis to four dimensions in the loop quantum gravitysetting. The very considerable work
on spherically symmetric midi-superspaces by Gambini, Pullin, Bojowald and others will serve as
a point of departure for this analysis.

• Contact with low energy physics:Spin foam models provide a convenient arena to discuss
issues such as the graviton propagator,n point functions and scattering, that lie at the heart of
perturbative treatments. At first, it seems impossible to have non-trivial n-point functions in a
diffeomorphism invariant theory. Indeed, how could one saythat the 2-point function falls off
as 1/rn when the distancer between the two points has no diffeomorphism invariant meaning?
Thanks to a careful conceptual set-up by Oeckl, Colosi, Rovelli and others, this issue has been
satisfactorily resolved. To speak ofn-point functions, one needs to introduce a boundary state (in
which the expectation values are taken) and the notion of distancer descends from the boundary
state. Interestingly, a detailed calculation of the 2-point function brought out some limitations of the
Barrett-Crane model and provided new impetus for the EPRL and FK models. As Perini’s talks at
this school showed, these calculations by Bianchi, Ding, Magliaro and Perini strongly indicate that,
to the leading order, a graviton propagator with the correctfunctional form and tensorial structure
will arise from these models.

However, these calculations can be improved in a number of respects and their full implica-
tions have yet to be properly digested. In particular, one needs a better handle on contributions from
2-complexes with large numbers of vertices and the physics of the sub-leading terms. These terms
seem to be sensitive to the choice of the boundary state and there isn’t a canonical one represent-
ing Minkowski space. Therefore, comparison with the standard perturbation theory in Minkowski
space is difficult. This is a fertile and important area for further research. Indeed the key challenge
in this area is to ‘explain’ why perturbative quantum general relativity fails if the theory exists
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non-perturbatively. As mentioned in section 1, heuristically the failure can be traced back to the
insistence that the continuum space-time geometry is a goodapproximation even below the Planck
scale. But a more detailed answer is needed. For example, is it because, as developments in the
asymptotically safe scenarios indicate [47, 52], the renormalization group has anon-Gaussianfixed
point?

• Unification. Finally, there is the issue of unification. At a kinematical level, there is already
an unification because the quantum configuration space of general relativity is the same as in gauge
theories which govern the strong and electro-weak interactions. But the non-trivial issue is that
of dynamics. To conclude, let us consider a speculation. Onepossibility is to use the ‘emergent
phenomena’ scenario where new degrees of freedom or particles, which were not present in the
initial Lagrangian, emerge when one considers excitationsof a non-trivial vacuum. For example,
one can begin with solids and arrive at phonons; start with superfluids and find rotons; consider
superconductors and discover cooper pairs. In loop quantumgravity, the micro-state representing
Minkowski space-time will have a highly non-trivial Planck-scale structure. The basic entities will
be 1-dimensional and polymer-like. One can argue that, evenin absence of a detailed theory, the
fluctuations of these 1-dimensional entities should correspond not only to gravitons but also to
other particles, including a spin-1 particle, a scalar and an anti-symmetric tensor. These ‘emergent
states’ are likely to play an important role in Minkowskian physics derived from loop quantum
gravity. A detailed study of these excitations may well leadto interesting dynamics that includes
not only gravity but also a select family of non-gravitational fields. It may also serve as a bridge
between loop quantum gravity and string theory. For, stringtheory has two a priori elements:
unexcited strings which carry no quantum numbers and a background space-time. Loop quantum
gravity suggests that both could arise from the quantum state of geometry, peaked at Minkowski
(or, de Sitter) space. The polymer-like quantum threads which must be woven to create the classical
ground state geometries could be interpreted as unexcited strings. Excitations of these strings, in
turn, may provide interesting matter couplings for loop quantum gravity.

2.3.3 Some Final Remarks

From examples discussed in this section it is clear that loopquantum gravity has witnessed sig-
nificant advances over the last decade, both in its foundations and applications. It is therefore im-
portant for the community to make sustained progress on directions that have already been opened
up. Of course one constantly needs an influx of new ideas. But it would be a mistake if a significant
fraction of the community focuses on constructing new models every few months, making a first
stab and then passing on to the next model. The cumulative results in the main stream development
of loop quantum gravity now carry sufficient weight for us to take the basic ideas seriously and
continue to develop them by attacking the hard conceptual and technical open issues. Examples
of such issues are: Finding principles and strategies to significantly narrow the ambiguities in the
definition of the Hamiltonian constraint; extending further explorations of the role of supersym-
metry initiated by the Erlangen group; sharpening the set ofquantum geometries to sum over, and
addressing the problem of convergence in spin foam models; analyzing the renormalization group
flows in group field theory; understanding the dependence of the n-point functions on the choice
of the boundary state; developing approximation methods tocalculate S-matrix from spin foams
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and pin-pointing why the standard perturbative treatmentsfail; fully incorporating matter fields in
spin foams, particularly scalar fields; constructing effective field theories to adequately describe
low energy physics; finding the detailed relation between loop quantum gravity and loop quantum
cosmology; constructing a detailed completion of the inflationary paradigm in the Planck regime;
exploring its observable consequences in the very early universe; ... The list is long enough to keep
young researchers busy and happy for quite a while! Furthermore, in this work, it is important to
keep focus on physical issues and try to solve problems ofdirect physical interest. Developing for-
malism is important because it streamlines the ideas and procedures. But it is not an end in itself.
Indeed, it is of little use unless it leads to answers to the long standing physical questions.

Finally, there is a complementary direction. Because the mathematics underlying loop quan-
tum gravity is rigorous, the subject is now begun to make inroads into other areas of mathematical
physics and mathematics itself. For example, there is now literature on spin networks, quantum
topology and computing, spin foams and non commuting geometry, Holst action and asymptotic
safety, loop quantum gravity and topos theory, spectral triples over the space of generalized connec-
tions etc. from researchers like Kauffmann, Marcolli, Reuter, Dahlen, Aastrup and Grimstrup from
outside the traditional loop quantum gravity community. Conversely, some loop quantum gravity
researchers such as Ma, Gambini, Pullin, Singh, Dittrich, Freidel and Fleischhack are applying
techniques developed in the field to other areas such as thef (R) theories that rose to prominence
in cosmology, generalized quantum mechanics, statisticalmechanics, non-commutative geometry,
gauge theories and geometry. Thus there is ample evidence that the subject is now sufficiently ma-
ture to have applications to other areas. In these explorations, it is important to focus on problems
that other communities consider as important in their areas. In my view, this ‘outward bound’ spirit
is the second pillar on which further development of the fieldwill rest.
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