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Loop gravity Carlo Rovelli

1. Where are we in quantum gravity?

Our current knowledge on the elementary structure of nature is summed up in three theories:
quantum theory, the particle-physics standard model (with neutrino mass) and general relativity
(with cosmological constant). With the notable exception of the “dark matter" phenomenology,
these theories appear to be in accord with virtually all present observations. But there are physical
situations where these theories lack predictive power: We do not know the gravitational scattering
amplitude for two particles, if the center-of-mass energy is of the order of the impact parameter in
Planck units; we miss a reliable framework for very early cosmology, for predicting what happens
at the end of the evaporation of a black hole, or describing the quantum structure of spacetime at
very small scale. This is because the standard model is based on flat-space quantum field theory
(QFT), which disregards the general relativistic aspects of spacetime, and GR disregards quantum
theory.

There are two problems raised by this situation. The first is to complete the picture and make
it consistent. This is called the problem of quantum gravity, since what is missing are the quantum
properties of gravity. A second, distinct, problem, is unification, namely the hope of reducing the
full phenomenology to the manifestation of a single entity. (Maxwell theory unifies electricity
and magnetism, while QCD consistently completes the standard model, but is not unified with
electroweak theory.)

Loop quantum gravity (LQG), or loop gravity, is a tentative solution to the first of these prob-
lems, and not the second.1 Its aim is to provide predictions for quantum gravitational phenomena,
and a coherent framework for GR and QFT, consistent with the standard model. LQG is not yet
complete, but is a mature theory, where physical calculations can be performed.

The theory defines a version of QFT that does not disregard the lesson of GR and –the other
way around–a theoretical account of space, time and gravitation that does not disregard quantum
theory. The idea that underlies the theory is to take seriously the import of quantum theory as well
as that of GR. GR has proven spectacularly effective for describing relativistic gravitation. It has
achieved this result by modifying in depth the way we describe of space and time. LQG merges
the general-relativistic understanding of space and time into QFT.

GR and quantum theory (adapted to GR’s temporal evolution) are therefore the well-established
physical ground of LQG. Assuming this ground to remain valid all the way to the Planck scale is
a substantial extrapolation. But extrapolation is the most effective tool in science. Maxwell equa-
tions, found in a lab, work from nuclear to galactic scale. Up to contrary empirical indications
–always possible–, a good bet is that what we have learned so far may well continue to hold. Some
Planck-scale observations are becoming possible today, and their results support the confidence in
such extrapolations (see e.g. [1]).

Full direct empirical access to quantum gravitational phenomena, on the other hand, is not
easy. This is a nuisance. But it is not an obstacle, because the current problem is not to select
among different theories of quantum gravity: it is to find at least one complete and consistent
theory. LQG aims at providing one such a complete and consistent quantum theory of gravity.

1It is sometime said that quantum gravity requires unification. All arguments to this effect rely on assumptions of
conventional local QFT which are violated in loop gravity, because of the quantum properties of spacetime itself.
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In these lectures I give a self-contained presentation of the theory. I focus on the technical
construction of the covariant theory.2 For a wider presentation of the many aspects of LQC and
its applications, see [5]. I start by sketching the structure of the theory, below. Then, Section 2
defines states and operators. Section 3 the transition amplitudes. Section 4 some applications. A
list of problems is given in Appendix A. Mathematical review, advanced comments, and pointers
to alternative formulations are in smaller characters.

1.1 The structure of the theory

LQG utilizes the Ashtekar’s formulation of GR [6] and its variants, and can be “derived" in
different ways. The three major ones are: canonical quantization of GR, covariant quantization
of GR on a lattice, and a formal quantization of geometrical “shapes". Surprisingly, these very
different techniques and philosophies converge towards the same formalism. The convergence
supports the idea that LQG is a natural formalism for general relativistic QFT.

I sketch these derivations in Section 5. But in the main part of these lectures I do not follow
any of them. Rather, I give directly the definition of the quantum theory, as if I introduced QED by
giving the definition of the Hilbert space of photons and electrons, and the Feymnan rules defining
the transition amplitudes. In the rest of this Section, I anticipate a brief non-technical overview of
the structure of the theory.

1.1.1 States and operators

The gravitational analog of QED’s photons and electrons Hilbert space is defined in Section
2. The quanta of LQG differ from those of QED, because the Maxwell and Dirac fields live over a
fixed spacetime metric space, while the gravitational field forms itself the spacetime metric space.
It follows that the quanta of gravity are also “quanta of space". They do not live in space, but give
rise to space themselves.

The mathematics needed to describe such quanta of space is provided by the theory of spin
networks (essentially graphs colored with spins, see Figure 1), first developed by Roger Penrose,
and then independently rediscovered as the result of a textbook canonical quantization of GR in
Ashtekar variables.
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FIG. 1. A spin network and the “quanta of space” it describes.

The spin-networks Hilbert space is not an exotic ob-
ject. It is essentially nothing else than the conven-
tional Hilbert space of SU(2) lattice Yang-Mills the-
ory. Ashtekar has shown that the kinematics of GR can
be neatly cast into the same form as the kinematics of
SU(2) Yang-Mills theory. The other way around, the
Hilbert space of SU(2) Yang-Mills lattice theory admits
an interpretation as a description of quantized geome-
tries, formed by quanta of space, as we shall see in a
moment. This interpretation forms the content of the
“spin-geometry” theorem by Roger Penrose, and an ear-
lier related theorem by Hermann Minkowski. These two
theorems ground the kinematics of LQG.

Alternatively, this same Hilbert space can be seen as
the quantization of the moduli space of the flat SU(2)
connections on the topologically non-trivial manifold M⇤

obtained removing the one skeleton of a Regge triangula-
tion from the 3d space. In a Regge geometry, the connec-
tion is flat on M⇤, because curvature is concentrated on
the Regge bones. Therefore the moduli space describes
Regge geometries, which, in turn, can approximate Rie-
manian geometries arbitrarily well.

The resulting description of quantum space is a solid
part of LQG. It provides a clear mathematical and in-
tuitive picture of quantum space, and it is used in all
versions of the theory.

Its most remarkable feature is the discreteness of the
geometry at the Planck scale, which appears in this con-
text as a rather conventional quantization e↵ect: In GR,
the gravitational field determines lengths, areas and vol-
umes. Since the gravitational field is a quantum operator,
these quantities are given by quantum operators. Planck
scale discreteness follows from the spectral analysis of
such operators.

To avoid a common misunderstanding, I emphasize
that the discreteness is not given by the fact that the
grains of space in Figure 1 are discrete objects. Rather,
it is given by the fact that the size of each grain is quan-
tized in discrete steps3, with minimum non-vanishing size
at the Planck scale. This is the key result of the theory,
which becomes later responsible of the UV finiteness of
the transition amplitudes.

2. Transition amplitudes

The covariant formulation of LQG is based on a con-
crete definition of the formal “sum over 4-geometries” of
the exponential of the GR action [7]

Z ⇠
Z

Dg e
i
~
R
R
p

g d4x. (1)

In the much simpler context of three Euclidean spacetime
dimensions, a beautiful and surprising definition of this
“sum over geometries” was found by Ponzano and Regge
in 1968 [8] and made rigorous by Turaev and Viro in 1992
[9]. The Ponzano-Regge theory fixes a triangulation � of
spacetime, assigns half integers, or spins, jf to each bone
(segment) f of � and is defined by the partition function

Z =
X

jf

Y

f

(2jf + 1)
Y

v

{6j} (2)

where v labels the tetrahedra of � and {6j} is the Wigner
6-j symbol (the natural invariant object of SU(2) repre-
sentation theory constructed with six spins). Interpret
the spins as assigning (discrete) lengths to the bones of a

3 The quantum aspect of a photon is not the discreteness of the
Fourier modes of the electromagnetic field in a box: it is the fact
that the energy of each mode is quantized in multiples of h⌫.

Figure 1: A spin network and the “quanta of space" it describes.

2For the alternative, canonical, formulation, see the recent papers [2, 3] and reference therein, or the classic textbook
[4].
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The spin-networks Hilbert space is not an exotic object. It is essentially nothing else than
the conventional Hilbert space of SU(2) lattice Yang-Mills theory. Ashtekar has shown that the
kinematics of GR can be neatly cast into the same form as the kinematics of SU(2) Yang-Mills
theory. The other way around, the Hilbert space of SU(2) Yang-Mills lattice theory admits an
interpretation as a description of quantized geometries, formed by quanta of space, as we shall
see in a moment. This interpretation forms the content of the “spin-geometry" theorem by Roger
Penrose, and an earlier related theorem by Hermann Minkowski. These two theorems ground the
kinematics of LQG.

Alternatively, this same Hilbert space can be seen as the quantization of the moduli space of
the flat SU(2) connections on the topologically non-trivial manifold M ∗ obtained removing the one
skeleton of a Regge triangulation from the 3d space. In a Regge geometry, the connection is flat on
M ∗, because curvature is concentrated on the Regge bones. Therefore the moduli space describes
Regge geometries, which, in turn, can approximate Riemanian geometries arbitrarily well.

The resulting description of quantum space is a solid part of LQG. It provides a clear mathe-
matical and intuitive picture of quantum space, and it is used in all versions of the theory.

Its most remarkable feature is the discreteness of the geometry at the Planck scale, which
appears in this context as a rather conventional quantization effect: In GR, the gravitational field
determines lengths, areas and volumes. Since the gravitational field is a quantum operator, these
quantities are given by quantum operators. Planck scale discreteness follows from the spectral
analysis of such operators.

To avoid a common misunderstanding, I emphasize that the discreteness is not given by the
fact that the grains of space in Figure 1 are discrete objects. Rather, it is given by the fact that the
size of each grain is quantized in discrete steps3, with minimum non-vanishing size at the Planck
scale. This is the key result of the theory, which becomes later responsible of the UV finiteness of
the transition amplitudes.

1.1.2 Transition amplitudes

The covariant formulation of LQG is based on a concrete definition of the formal “sum over
4-geometries" of the exponential of the GR action [7]

Z ∼
∫

Dg e
i
h̄
∫
R
√

gd4x. (1.1)

In the much simpler context of three Euclidean spacetime dimensions, a beautiful and surprising
definition of this “sum over geometries" was found by Ponzano and Regge in 1968 [8] and made
rigorous by Turaev and Viro in 1992 [9]. The Ponzano-Regge theory fixes a triangulation ∆ of
spacetime, assigns half integers, or spins, j f to each bone (segment) f of ∆ and is defined by the
partition function

Z = ∑
j f

∏
f
(2 j f +1) ∏

v
{6 j} (1.2)

where v labels the tetrahedra of ∆ and {6 j} is the Wigner 6- j symbol (the natural invariant object of
SU(2) representation theory constructed with six spins). Interpret the spins as assigning (discrete)

3The quantum aspect of a photon is not the discreteness of the Fourier modes of the electromagnetic field in a box:
it is the fact that the energy of each mode is quantized in multiples of hν .
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lengths to the bones of a piecewise flat geometry on ∆. Then Ponzano and Regge showed that,
for large spins, {6 j} is essentially the exponent of the Regge action, which is turns approximates
the action of GR. In other words, (1.2) provides a simple geometrical way to discretize and define
(1.1).

The relation between Ponzano-Regge theory and LQG was recognized early, with the realiza-
tion that the Ponzano-Regge assumption that the length of the edges are discrete, is nothing else
than the LQG result of the discretization of the geometry, in its 3d version [10]. But it is only in the
last years that the full power of similarity has emerged, with the discovery of a four dimensional
version of the Ponzano-Regge amplitude (1.2). This is indeed the 4d amplitude that defines the
covariant dynamics of LQG:

Z = ∑
j f ,ie

∏
f
(2 j f +1) ∏

v
Av( je, iv), (1.3)

where the spins are now associated to the faces of a cellular decomposition ∆ of spacetime (or
“foam"), ie are other SU(2) quantum numbers associated to 3-cells, called intertwiners (defined in
the next section); v labels the 4-cells and Av( je, iv) is a simple generalization of the {6 j} symbol,
which involves both SU(2) and SL(2,C), which I define in detail in Section 3.

The main properties of (1.3) are the following.

i. In a suitable semiclassical limit, (1.3) approaches (1.1). Av( je, iv) approaches the exponential
of the Regge action, which in turns approaches the action of general relativity. Therefore
(1.3) is a discretization of the path integral for quantum gravity.

iii. (1.3) is ultraviolet finite, a property strictly connected to the Planck discreteness of the spin
networks. It admits a quantum-deformed version [11, 12] that describes the cosmological
constant coupling [13] and is IR finite.4 In this version, a theorem assures that (1.3) is finite.

iv. The amplitude (1.3) is for pure gravity, but it can be coupled to fermions and Yang Mills
fields [14]. The finiteness result continues to hold.

The expression (1.3) was found independently and developed during the last few years by a
number of research groups [15, 16, 17, 18, 19, 20, 21], using different path and different formalisms
(and a variety of notations). Different definitions have later been recognized to be equivalent.
The resulting theory is variously denoted as “EPRL model", “EPRL-FK model", “EPRL-FK-KKL
model", “new BC model"... in the literature. I call it here simply the partition function of LQG.
The presentation I give below does not follow any of the original derivations.

It is convenient to view (1.3) as defined on the dual of the cellular decomposition, or, more
precisely, on the two-complex C formed by the two-skeleton of the dual, and extend its definition
to two-complexes that do not come from a triangulation. In C , a 4-cell v becomes vertex, a 3-cell
e becomes an edge and a face f becomes a dual face; see Figure 2. Such a two-complex, colored
with spins j f and intertwiners ie is called a “spinfoam". Accordingly, (1.3) (which I shall denote
ZC below to emphasize the dependence on the two-compex) is also called a “spinfoam sum", or a
“spinfoam model".

4In 3d, this gives the Turaev-Viro theory [9].
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v

f

e

Figure 2: A simple two-complex with one internal vertex.

A remarkable aspect of the definition (1.3) of the dynamics of LQG is its extreme simplicity.
The amplitude (1.3) can also be derived by requiring a certain number of general properties such
as locality, linearity and Lorentz invariance to hold [22]. It is quite surprising that this simple
algebraic definition leads to the Einstein action.

1.1.3 Physical amplitudes and the continuum limit

Because of diff-invariance, it is not easy to extract physical information from (1.3) inserting
bulk operator, as usually done in QFT. This is a well-known general difficulty of quantum gravity.
But there is an alternative technique that works in quantum gravity, which is to compute (1.3) on
a foam with boundaries, as a function of the boundary state [23]. The boundary ∂C of a two
complex is a (not necessarily connected) graph Γ, and the boundary data for (1.3) are spins on the
links and intertwiners on the nodes. That is, they are spin network states, as described above in the
subsection 1.1.1:

ZC ( jl, in) = ∑
j f ,ie

∏
f
(2 j f +1) ∏

v
Av( je, iv) ∈H∂C (1.4)

where jl and in are the quantum numbers of the boundary spin networks.5

When the boundary graph is formed by several disconnected components, the expression (1.4)
defines transition amplitudes between spin network states, and standard techniques can then be
used to derive various other physically meaningful quantities, for instance quantum cosmology
amplitudes or n-point functions for the gravitational field over a background. The information
about the backgound over which the n-point functions are computed is taken into account in the
choice of the boundary states themselves. I illustrate this in Section 4.

Exact transition amplitudes are defined by a refinement limit, namely by a foam with a large
number of vertices. Indeed, (1.3) is akin to the lattice definition of QCD, where the continuum
theory requires a refinement limit to be taken. But diff-invariance leads to a fundamental difference
in the way the continuum limit is achieved. QCD requires a parameter in the action to be taken to
a critical value, while here the continuum limit is defined uniquely by the refinement of the foam
[31].

5Indeed, a spinfoam can also be viewed as a history of an evolving spin network. The evolution is non-trivial
only at the vertices, where the nodes of the spin network branch. The branching of the nodes is precisely the form
of the evolution generated by the hamiltonian dynamics, in the canonical formulation of LQG. Indeed, the result that
prompted the interest in LQG in the eighties was precisely the discovery that in the loop representation of quantum
general relativity the Wheeler-deWitt operator is trivial everywhere except at the nodes [24, 25]. Historically, spinfoams
first appeared in LQG in this form, as histories of spin networks [26, 27, 28, 29, 30].
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More importantly, in a suitable regime of boundary values, the number vertices can provide a
good expansion parameter. The expansion in small foams, can be an effective perturbation expan-
sion in an appropriate regime.6 I discuss this technique in Section 4.

The reason why this may happen is that a refinement of the foam brings each vertex amplitude
closer to the flat regime, and in this regime the theory approaches BF theory, which is a topolog-
ically invariant theory, namely invariant under a refinement of the lattice. In other words, there is
a regime where quantum gravity can be studied as a perturbation of a topological quantum field
theory. The topological QFT plays a role similar to that of the free theory is the conventional per-
turbation expansion: a non physical QFT sufficiently well understood to define non trivial theories
by a perturbation expansion around it.

After these general introductory notes, it is time to start the real work.

2. States and operators

2.1 Elementary math: SU(2)

“ It is the mark of the educated man to look for
precision in each class of things just so far as
the nature of the subject admits."
Aristotle, Nicomachean Ethics, I,3.

LQG uses heavily the group SU(2), its representation theory and the Hilbert spaces of the square-integrable functions
over the group. Here is a reminder of some elementary facts about these.

SU(2) is the group of 2×2 unitary matrices h with unit determinant. A basis in its algebra is provided by the three

matrices τi =− i
2 σi, i = 1,2,3, where σi =

{(
1

1

)
,
(

−i
i

)
,
(

1
−1

)}
are the Pauli matrices. Every h ∈ SU(2) can be

written as

h = eα iτi = cos
(

α

2

)
11+ isin

(
α

2

)
α i

α
σi. (2.1)

where α ≡ √αiαi < 2π is the rotation angle of the SO(3) rotation corresponding to the SU(2) element h. The group
manifold of SU(2) is the three sphere (x0)2 +(x1)2 +(x2)2 +(x3)2 = 1, where x0 = cos

(
α

2
)

and xi = sin
(

α

2
)

α i

α
. The

standard Haar measure on SU(2) can be written as the invariant measure on this sphere: dh = d4x δ (|x|2−1).
The irreducible unitary representations of SU(2) are labelled by a half-integer j = 0, 1

2 ,1,
3
2 , ... called “spin".

The representation space H j has dimension d j = 2 j+ 1. The standard basis that diagonalizes τ3 is denoted vm, m =

− j, ...,+ j. The representation matrices are the Wigner matrices D j(h)m
n. The spin- j character is defined as χ j(h) =

tr[D j(h)]. A key property of these matrices is to be orthogonal in the Haar measure
∫

SU(2)
dh D j′(h)m′

n′ D j(h)m
n =

1
d j

δ
j j′

δ
mm′

δnn′ . (2.2)

6This opens up another interpretation of the spinfoams: on a given foam, (1.4) can be seen as a Feynman graph
amplitude, a term in an expansion, describing a physical process.
In fact, the amplitude (1.4) can be literally obtained as the Feynman graph of an auxiliary field theory. This is a very
interesting way of formulating the theory, called the “group field theory" formulation, which I will not explicitly cover
here, although I implicitly use techniques derived from it. See [32, 33, 34].
The double interpretation of (1.4) –as Feynman-graphs, as in QED (or high energy QCD), and as a lattice, as in nonper-
turbative QCD– is puzzling at first. But a moment of reflection shows that it is natural: a Feynman graph is a history of
quanta. The lattice is a collection of small regions of spacetime. But in quantum gravity regions of space are quanta of
the gravitational field, and therefore the lattice is itself a “history of quanta of the field", namely a Feynman graph. Such
convergence between the QED perturbative picture and the QCD lattice one is an intriguing feature of the theory.
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Using the fact that the Wigner matrices are unitary, this can also be written in the more useful form
∫

SU(2)
dh D j′(h−1)n′

m′ D j(h)m
n =

1
d j

δ
j j′

δ
mm′

δnn′ . (2.3)

which admits the simple graphical representation:

∫

SU(2)
dh

n’

m’t
?

n

mt6
=

1
d j

n’

m’

n

m

. (2.4)

Spaces of functions on the group play an important role in LQG: in particular, the space L2[SU(2)] of the functions
square-integrable in the Haar measure. Because of the orthogonality (2.2), the Wigner matrices form a basis in this
space. Writing, in Dirac notation, D j(h)m

n = 〈h| j,m,n〉 and 〈ψ|φ〉= ∫ dhψ(h)φ(h), equation (2.2) reads

〈 j′,m′,n′| j,m,n〉= δ
j j′

δ
mm′

δnn′
1

2 j+1
. (2.5)

This is the content of the Peter-Weyl theorem, which plays a major role below. This can equally be expressed as follows.
Since D j : H j→H j, we can write D j ∈ (H ∗

j ⊗H j) and the Peter-Weyl theorem can be expressed in the useful notation

L2[SU(2)] =⊕ j
(
H ∗

j ⊗H j
)
. (2.6)

Some operators are naturally defined on L2[SU(2)]. The (matrix elements of the) SU(2) group element h act as
multiplicative operators. The (hermitian) left and right invariant vector fields~L = {Li} and ~R = {Ri} are defined by

Liψ(h)≡ i
d
dt

ψ(hetτi)

∣∣∣∣
t=0

, Riψ(h)≡ i
d
dt

ψ(etτi h)
∣∣∣∣
t=0

. (2.7)

Acting on the Wigner matrices, they give

~L D j(h) = i D j(h) ~J j, ~R D j(h) = i ~J j D j(h), (2.8)

where ~J j are the (anti-hermitian) generators in the representation j. The Casimir operator L2 := LiLi acts on the individ-
ual H j in the Peter-Weyl decomposition (because it acts only on the m indices and not on the j indices) and is diagonal
in the spins

L2 D j(h) = j( j+1)D j(h). (2.9)

Given k spins j1, ..., jk, the tensor product H j1⊗ ...⊗H jk is the space of the tensors im1...mk with indices in different
representations. This tensor product can be decomposed into irreducibles, as in standard angular momentum theory. In
particular, its invariant subspace is formed by the invariant tensors, satisfying D j1(h)m1 n1 ...D

jk (h)mk nk in1...nk = im1...mk .
These are called intertwiners and the linear space they span

K j1... jk = Inv[H j1 ⊗ ...⊗H jk ] (2.10)

is called “intertwiner space". Examples of invariant tensors are the fully antisymmetric tensor ii jk = εi jk in K111 =

H1⊗H1⊗H1, the tensor iiAB = σi
A

B formed by the components of the Pauli matrices in K1 1
2

1
2
= H1⊗H 1

2
⊗H ∗

1
2

,

and the three tensors ii jkl = δi jδkl , i′i jkl = δikδ jl and i′′′i jkl = δilδ jk in K1111 = H1⊗H1⊗H1⊗H1. Since an SU(2)
representation appears at most once in the tensor product of two others, it is easy to see that K j1 j2 j3 is always 1-
dimensional, and therefore ii jk and iiAB are unique (up to scaling); while K1111 is 3-dimensional.

Problems: (i) Compute the normalization and the scalar products between the three intertwiners in K1111 mentioned
above. Find an orthonormal basis. (ii) Find the dimension of K 1

2
1
2

1
2

1
2
. (iii) Find an orthonormal basis.

2.2 Elementary math: graphs
Graphs play a role in the following. Roughly, the adjacency relations (who is next to who) between the elementary

quanta of space is described by graphs.
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Figure 3: Picturing of an graph with N = 8 and L = 10.

A graph Γ is a combinatorial object. It is defined as a triple Γ = (L ,N ,∂ ), where L is a finite set of L elements
l, which we call “links", N is a finite set of N elements n, which we call “nodes", and the boundary relation ∂ = (s, t)
is an (ordered) couple of functions s : L →N called “source" and t : L →N , called “target".

The simplest way of visualizing a graph is of course to imagine the nodes as points and the links as (oriented) lines
that join these points. Each link goes from its source to its target.

It is convenient to define also a “reversed" link l−1 for each l, where s(l) = t(l−1) and t(l) = s(l−1). I use the
notation l ∈ n to indicate that l is a link or a reversed link with s(l) = n. Thus the set of l ∈ n is the set of the oriented
links bounded by the node n, all considered with outgoing orientation.

An automorphism of a graph is a map from Γ to itself which preserves ∂ . Given a graph, its automorphisms form
a discrete group.

We say that a graph Γ′ is a subgraph of a graph Γ, we write Γ′ ≤ Γ and we say that Γ “contains" Γ′, if there exists a
map sending the links and the nodes of Γ′ into the links and the nodes of Γ, preserving the boundary relations. Of course
if Γ contains Γ′ there may be more than one of the maps. That is, it might be possible to “place" Γ′ into Γ in different
manners.

The relation ≤ equips the set of all graphs with a partial order. This order admits an upper bound, namely given
any two graphs Γ and Γ′ we can always find a third graph Γ′′ which contains both Γ and Γ′. This implies that we can
define the limit Γ→ ∞ of any quantity fΓ that depends on graphs. If it exists, we say that

f∞ = lim
Γ→∞

fΓ (2.11)

if for any ε there is a Γ′ such that | f∞− fΓ|< ε for all Γ > Γ′.

Problem: What is limΓ→∞ 1/L?

With these preliminaries, we are ready to define states and observables of quantum gravity. The
kinematics of any quantum theory is given by a Hilbert space H carrying an algebra of operators
A that have a physical interpretation in terms of observables quantities of the system considered.
Let us start with H .

2.3 Hilbert space

Let me start by recalling the structure of the Hilbert spaces used in QED and in QCD. A key
step in constructing any interactive QFT is always a finite truncation of the dynamical degrees of
freedom. In weakly coupled theories, such as low-energy QED or high-energy QCD, the truncation
is provided by the particle structure of the free field, which allows us to consider virtual processes
involving finitely many particles, described by Feynman diagrams. In strongly coupled theories,
such as QCD, we can resort to a non-perturbative truncation, such as a finite lattice approximation.7

The full theory is then formally obtained as a limit where all degrees of freedom are recovered.
In the first case, we can start by defining the single-particle Hilbert space H1. For a massive

scalar theory, for instance, this can be taken to be the space H1 = L2[M] of the square-integrable

7In either case, the relevant effect of the remaining degrees of freedom can be subsumed under a dressing of the
coupling constants, if a criterion of renormalizability or criticality is met.
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functions on the Lorentz hyperboloid M. The n-particle Hilbert space is

Hn = L2[Mn]/∼ (2.12)

where the factorization is by the equivalence relation determined by the action of the permutation
group, which symmetrizes the states. The Hilbert space

HN =
N⊕

n=0

H n (2.13)

contains all states up to N particles, and is actually sufficient for all calculations in perturbation
theory. HN is naturally a subspace of HN′ for N < N′, and the full Fock space is the limit

HFock = lim
N→∞

HN . (2.14)

In the second case, namely in lattice gauge theory, the canonical theory is defined on a lattice
Γ with, say, L links l and N nodes n. The variables are group elements Ul ∈ G, where G is the
gauge group, associated to the links, and the non-gauge-invariant Hilbert space is [35]

H̃Γ = L2[GL]. (2.15)

Gauge transformations act on the states ψ(hl) ∈ H̃Γ at the nodes as

ψ(hl)→ ψ(gs(l) hl g−1
t(l)), gn ∈ G (2.16)

and the space of gauge invariant states is the physical Hilbert space

HΓ = L2[GL/GN ] (2.17)

formed by the states invariant under (2.16). Again the full theory is obtained by appropriately
taking L and N to infinity.

The Hilbert space of LQG has aspects in common with both these constructions. Let me now
define it in three steps:

(i) For each graph Γ, consider a “graph space"

HΓ = L2[SU(2)L/SU(2)N ] (2.18)

which is precisely the Hilbert space (2.17) of an SU(2) lattice gauge theory, over a graph
which is not necessarily a cubic lattice. As we shall see, the local SU(2) gauge is related to
the freedom of rotating a 3d reference frame in space.

(ii) If Γ is a subgraph of Γ′ then HΓ can be naturally identified with a subspace of HΓ′ (the
subspace formed by the states ψ(hl) ∈HΓ′ depending on hl only if l is in the subgraph Γ).
Define an equivalence relation ∼ as follows: two states are equivalent if they can be related
(possibly indirectly) by this identification, or if they are mapped into each other by the group
of the automorphisms of Γ. Let

H̃Γ = HΓ/∼ . (2.19)
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(iii) The full Hilbert space of quantum gravity is finally defined as

H = lim
Γ→∞

H̃Γ. (2.20)

It is separable.

This completes the construction of the Hilbert space of the theory.
H has aspects in common with Fock space as well as with the state space of lattice gauge

theory. As we shall see, states in HΓ can be viewed as formed by N quanta, where N is the number
of nodes of the graph. Thus, each node of the graph is like a particle in QED, namely a quantum of
electromagnetic field. Here, each node represents a quantum of gravitational field.

But there is a key difference. QED Fock quanta carry quantum numbers coding where they are
located in the background space-manifold. Here, since in general relativity the gravitational field
is also physical space, individual quanta of gravity are also quanta of space. Therefore they do not
carry information about their localization in space, but only information about the relative location
with respect to one another. This information is coded by the graph structure. Thus, the quanta of
gravity form themselves the texture of of physical space. Therefore the graphs in (2.20) can also
be seen as a generalization of the lattices of lattice QCD.

This convergence between the perturbative-QED picture and the lattice-QCD picture follows
directly from the key physics of general relativity: the fact that the gravitational field is physical
space itself. Indeed, the lattice sites of lattice QCD are small regions of space; according to general
relativity, these are excitations of the gravitational field, therefore they are themselves quanta of
a (generally covariant) quantum field theory. An N-quanta state of gravity has therefore the same
structure as a Yang-Mills state on a lattice with N sites. This convergence between the perturbative-
QED and the lattice-QCD pictures is a beautiful feature of loop gravity.

Another similarity appears in the factorization by graph automorphisms, which is analogous
to the symmetrization of individual particle states defining the Fock n-particle states.

Comments. This is the “combinatorial H ". An alternative studied in the literature is to consider embedded graphs
in a fixed three-manifold Σ –namely collections of lines l embedded in Σ that meet only at their end points n– and
to define Γ as an equivalence class of such embedded graphs under diffeomorphisms of Σ. This choice defines the
“Diff H ". A third alternative is to do the same but using extended diffeomorphisms [36]. This choice defines the
“Extended-Diff H ". With these definitions a graph is characterized also by its knotting and linking. (If Σ is chosen with
non-trivial topology, by the homotopy class of the graph as well). In addition, with the first of these alternatives graphs
are characterized by moduli parameters at the nodes as well (extended diffeos factor away these moduli [36]). The space
Diff H is non-separable, leading to a number of complications in the construction of the theory. The combinatorial H

considered here and the extended-Diff H are separable.
Neither knotting or linking, nor the moduli, have found a physical meaning so far, hence I tentatively prefer the

combinatorial definition. But there are also ideas and interesting attempts to interpret knotting and linking as matter
degrees of freedom [37, 38, 39]. If it worked it would be very remarkable success, but it is a long shot.

Another option, which I found particularly interesting, and I would instinctively favor, is to restrict the graphs to
those which are dual to a cellular decomposition of three space.

More restrictive is to only consider graphs that are dual to triangulations, namely to restrict the theory to graphs
Γ where all nodes are four valent. (The valence of a node n is the number of links for which n is the source plus the
number of links for which it is the target.) I do not take this option here, although several results in the literature refer to
the theory restricted in this manner.
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2.4 GR as a topological theory, I
There is another very interesting way of interpreting the Hilbert space HΓ, pointed out by Eugenio Bianchi [40].

Consider a Regge geometry in three (euclidean) dimensions. That is, consider a triangulation (or, more in general, a
cellular decomposition) of a 3d manifold M , where every cell is flat and curvature, determined by the deficit angles, is
concentrated on the bones. Let ∆1 be one-skeleton of the cellular decomposition, namely the union of all the bones.

Notice that the spin connection of the Regge metric is flat everywhere except on ∆1. Consider the space M ∗ =
M −∆1 obtained removing all the bones from M . Let A be the moduli space of the flat connections on M ∗ modulo
gauge trasformations.

A moment of reflection will convince the reader that this is precisely the configuration space [SU(2)L/SU(2)N ]

considered above, determined by the graph Γ which is dual to the cellular decomposition. This is the graph obtained by
representing each cell by a node and connecting any two nodes by a link if the corresponding cells are adjacent. It is the
graph capturing the fundamental group of M ∗.

Therefore the Hilbert space HΓ is naturally a quantization of a 3d Regge geometry. Since Regge geometries can
approximate Riemanian geometries arbitrarily well, this can be see as a way to capture quantum states of 3d geometries.

The precise relation between these variables and geometry becomes more clear in light of the Ashtekar formulation
of GR. Ashtekar has shown that GR can be formulated using the kinematics of an SU(2) YM theory. The canonical
variable is an SU(2) connection and the corresponding conjugate momentum is the triad field. Accordingly, we might
expect that the quantum derivative operators on the wave functions on HΓ represent the triad, namely metric information.
We’ll see below that this in indeed the case.

A word of caveat: in the Ashtekar formalism, the SU(2) connection is not the spin connection Γ of the triad: it
is a linear combination of Γ and the extrinsic curvature. Therefore the momentum conjugate the connection will code
information about the metric, while the information about the conjugate variable, namely the extrinsic curvature, is
included in the connection itself, or, in the discretization, in the group elements hl .

2.5 Operators

The fact that H can be interpreted as a space describing quanta of space follows from its
structure, as revealed by a crucial theorem due to Roger Penrose. Indeed, each Hilbert space HΓ

has a natural interpretation as a space of quantum metrics, early recognized by Penrose. Let’s see
how this happens.

The momentum operator on the Hilbert space of a particle L2[R] is the derivative operator
~p = −i∇ = −i d

d~x . The corresponding natural “momentum" operator on L2[SU2] is the derivative
operator (2.7). There is one of these for each link, call it~Ll .

As in lattice gauge theory, operators are defined on the individual spaces HΓ, not on H . Later I explain how these
operators are used in computing observable quantities.

Because of the gauge invariance (2.16), we have

Cn = ∑
l∈n

~Ll = 0. (2.21)

at each node n. The operator~Ll is not gauge invariant, namely it is not defined on gauge invariant
functions. But is easy to write a gauge invariant operator:

Gll′ =~Ll ·~Ll′ (2.22)

where s(l) = s(l′) = n. For reasons that will be clear in a moment, call this operator the “metric
operator". In particular, denote the diagonal entries of Gll′ as

A2
l = Gll. (2.23)
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The operator Gll′ coincides with Penrose’s metric operator [41]. Penrose spin-geometry the-
orem states that the operator Gll′ can be interpreted as defining angles in three dimensional space,
at each node [42, 43, 41]. The theorem states that these angles obey the dependency relations
expected of angles in three dimensional space.

I give here in more detail a sharper version of Penrose’s original spin-geometry theorem, based
on a result by Minkowski. Consider the classical limit of the Hilbert space HΓ, that is, consider
classical quantities~Ll satisfying (2.21). Minkowski’s theorem [44] states that whenever there are F
non-coplanar 3-vectors~Ll satisfying the condition (2.21), there exists a convex polyhedron in R3,
whose faces have outward normals parallel to~Ll and areas Al .

Problem: Consider a solid polyhedron immersed in a fluid with constant pressure p. What is the force on one face due
to the pressure? What is the total force on the polyhedron due to pressure? Derive (2.21) from this. (This is the proof of
(2.21) Roger Penrose immediately came up with, when I mentioned him Minkowski theorem.)

The resulting polyhedron is unique, up to rotation and translation. It follows that if we write
Gll′ = AlAl′ cos(θll′), then the quantities θll′ satisfy all the relations satisfied by the angles normal
to the faces of the polyhedra. The operators Gll′ fully capture the “shape" of the polyhedron,
namely its (flat) metric geometry, up to rotations. In other words, in the classical limit the states
in the Hilbert space HΓ describe a collection of flat polyhedra with different shapes, one per each
node of Γ. The quantum operators Al can be interpreted as giving the areas of these faces and the
quantum operators Gll′ as the (cosine of the) angles between two faces (multiplied by the areas).
See Figure 4.

Figure 4: Normals (here arrows) to the faces, summing up to zero and proportional to the area of the face,
uniquely determine the polyhedron (here a tetrahedron).

What has a collection of polyhedra to do with the gravitational field, which is classically
described by a continuous metric? The answer is suggested by Regge gravity: a collection of
flat polyhedra glued to one another defines a (non-differentiable) metric, where the curvature is
concentrated on the edges of the polyhedra. Thus, a collection of glued polyhedra provides a
discretized geometry, and therefore a gravitational field up to a finite truncation of its degrees of
freedom.

Thus, the Hilbert space HΓ describes a truncation of the degrees of freedom of GR, like the
N-particle Hilbert space of QED, or the Hilbert space of lattice QCD, describe truncations of the
degrees of freedom of a Yang-Mills field.

Using standard geometrical relations, we can write the volume of these polyhedra in terms
of the ~Ll operators. For instance, for a 4-valent node n, bounding the links l1, ..., l4 the volume
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operator Vn is given by the expression for the volume of a tetrahedron

Vn =

√
2

3

√
|~Ll1 · (~Ll2×~Ll3)|; (2.24)

gauge invariance (2.16) at the node ensures that this definition does not depend on which triple of
links is chosen.

As pointed out by Thomas Thiemann and Cecilia Flori [45], the definition of the vertex operator for higher valent
nodes given in the literature, is not entirely satisfactory. A good definition of the operator for general n-valent nodes
(which reduces to the one on (n− 1)-valent nodes when one of the links has zero spin) is still missing (see [46] for an
interesting track). This does not affect what follows.

Problem: Derive the
√

2
3 factor: Hint: take a tetrahedron having three sides equal to the three orthogonal basis vectors

in R3. It has three faces orthogonal to one another and with area 1
2 . Therefore the triple product gives

( 1
2
)3

.

Notice that the volume operator Vn acts precisely on the node space Kn, which, I recall is
the space of the intertwiners between the representations associated to the node n. It is therefore
convenient to choose at each node n a basis of intertwiners vn that diagonalizes the volume operator,
and label it with the corresponding eigenvalue vn. I use the same notation vn for the intertwiner
and for its eigenvalue.

Problem: (Important!) Find the basis that diagonalizes the volume in K 1
2

1
2

1
2

1
2

and in K1111.

Finally, the holonomy operator is the multiplicative operator hl associated to each link l. The
operators ~Ll and hl form a closed algebra and are the basic operators in terms of which all other
observables are built, like the creation and annihilation operators in QFT.

2.6 Spin network basis

While the full set of SU(2) invariant operators Gll′ do not commute, the Area and Volume
operators Al and Vn commute. In fact, they form a complete set of commuting observables in HΓ,
in the sense of Dirac (up to possible accidental degeneracies in the spectrum of Vn). We call the
orthonormal basis that diagonalizes these operators the spin-network basis.

This basis has a well defined physical and geometrical interpretation [47, 48, 49]. The basis
can be obtained via the Peter-Weyl theorem and it is defined by

ψΓ, jl ,vn(hl) =
〈
⊗l d jl D jl (hl)

∣∣ ⊗n vn
〉

Γ (2.25)

where D jl (hl) is the Wigner matrix in the spin- j representation and 〈·|·〉Γ indicates the pattern of
index contraction between the indices of the matrix elements and those of the intertwiners given by
the structure of the graph.

Since the Area is the SU(2) Casimir, while the volume is diagonal in the intertwiner spaces,
the spin jl is easily recognized as the Area quantum number and vn as the Volume quantum number.

More in detail, the Peter-Weyl theorem states that L2[SU(2)L] can be decomposed into irreducible representations

L2[SU(2)L] =
⊕

jl

⊗

l

(H ∗
jl ⊗H jl ). (2.26)
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Here H j is the Hilbert space of the spin- j representation of SU(2), namely a 2 j + 1 dimensional space, with a basis
| j,m〉,m = − j, ..., j that diagonalizes L3. The star indicates the adjoint representation, but since the representations of
SU(2) are equivalent to their adjoint, we can forget about the star.8 For each link l, the two factors in the r.h.s. of (2.26)
are naturally associated to the two nodes s(l) and t(l) that bound l, because under (2.16) they transform under the action
of gs(l) and gt(l), respectively. We can hence rewrite the last equation as

L2[SU(2)L] =
⊕

jl

⊗

n
Hn (2.27)

where the node Hilbert space Hn associated to a node n includes all the irreducible H j that transform with gn under
(2.16), that is9

Hn =
⊗

l∈n

H jl . (2.28)

The SU(2) invariant part of this space
Kn = InvSU(2)[Hn]. (2.29)

under the diagonal action of SU(2) is the intertwiner space of the node n. The volume operator Vn acts on this space.
The Hilbert space KΓ is the subspace of HΓ formed by the gauge invariant states. Thus clearly

HΓ = L2[SU(2)L/SU(2)N ] =
⊕

jl

⊗

n
Kn. (2.30)

I denote PSU(2) : HΓ→KΓ the orthogonal projector on the gauge invariant states. It can be written explicitly in the form

PSU(2)ψ(hl) =
∫

SU(2)N
dgn ψ(gs(l)hlg

−1
t(l)). (2.31)

Notice also that the states where jl = 0 for some l are precisely the states that belong also to the
Hilbert space HΓ′ where Γ′ is the subgraph of Γ obtained erasing those l’s. It is therefore convenient
to define the subspace ĤΓ of HΓ, spanned by the spin network states with all jl nonvanishing. By
doing so, we can rewrite (2.20) as

H =
⊕

Γ

ĤΓ (2.32)

without then having to bother to factor the equivalence between spaces with different graph.
Concluding, a basis in H is labelled by three sets of “quantum numbers": an abstract graph Γ;

a coloring jl of the links of the graph with irreducible representations of SU(2) different from the
trivial one ( j = 1

2 ,1,
3
2 , ...); and a coloring of each node of Γ with an element vn in an orthonormal

basis in the intertwiner space Hn. The states |Γ, jl,vn〉 labelled by these quantum numbers are
called “spin network states" [47].

Problem: (Immediate) Use the above to prove that the Hilbert space of Loop Quantum Gravity is separable.

Problem: Consider the state |ΓΘ,1 1
2

1
2 〉 where ΓΘ is the graph formed by two nodes connected by three links. Write this

state as a sum of products of “loops", where a loop is the trace of a product of a sequence of h′s along a closed cycle
on the graph. Any spin network state can be written in this way. This is the historical origin of the denomination “loops
quantum gravity" for the theory. See [5].

8The star does not regard the Hilbert space itself: it specifies the way it transforms under SU(2).
9More precisely, Hn = (

⊗
s(l)=n H ∗

l )⊗ (
⊗

t(l)=n Hl).
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2.7 Physical picture

Spin network states are eigenstates of the area and volume operators. A spin network state has
a simple geometrical interpretation. It represents a “granular" space where each node n represents
a “grain" or “quantum" of space [50]. These quanta of space do not have a precise shape because
the operators that decide their geometry do not commute. Classically, each node represents a
polyhedron, thanks to Minkowski’s theorem, but the polyhedra picture holds only in the classical
limit and cannot be taken literally in the quantum theory. In the quantum regime, the operators
Gll′ do not commute among themselves, and therefore there is no sharp polyhedral geometry at the
quantum level. In other words, these are “polyhedra" in the same sense in which a particle with
spin is a “rotating body".

The spectrum of Al is easy to find out, since A2
l is simply the Casimir of one of the SU(2)

groups. Therefore the area eigenvalues are

a j =
√

j( j+1) (2.33)

where j ∈ IN/2. Notice that the spectrum is discrete and it has a minimum step between zero and
the lowest non-vanishing eigenvalue

a 1
2
=

√
1
2

(
1
2
+1
)
=

√
3

2
. (2.34)

The volume of each grain n is vn. Volume eigenvalues are not as easy to compute as area
eigenvalues. They can be computed numerically for arbitrary intertwiner spaces (the problem is just
to diagonalize a matrix) and there are elegant semiclassical techniques that give excellent results.

Problem: (Important) Find the eigenvalues of the volume in K 1
2

1
2

1
2

1
2

and K1111.
(

Answer to the f irst : v1 = v2 =
√

1
6
√

3
.
)

Two grains n and n′ are adjacent if there is a link l connecting the two, and in this case the area
of the elementary surface separating the two grains is determined by the spin of the link joining n
and n′. Physical space is “weaved up" [51] by this net of atoms of space.

2

the idea that LQG is a natural formalism for general rel-
ativistic QFT.

I sketch these derivations in Section V. But in the main
part of these lectures I do not follow any of them. Rather,
I give directly the definition of the quantum theory, as if
I introduced QED by giving the definition of the Hilbert
space of photons and electrons, and the Feymnan rules
defining the transition amplitudes. In the rest of this
Section, I anticipate a brief non-technical overview of the
structure of the theory.

1. States and operators

The gravitational analog of QED’s photons and elec-
trons Hilbert space is defined in Section II. The quanta
of LQG di↵er from those of QED, because the Maxwell
and Dirac fields live over a fixed spacetime metric space,
while the gravitational field forms itself the spacetime
metric space. It follows that the quanta of gravity are
also “quanta of space”. They do not live in space, but
give rise to space themselves.

The mathematics needed to describe such quanta of
space is provided by the theory of spin networks (essen-
tially graphs colored with spins, see Figure 1), first de-
veloped by Roger Penrose, and then independently redis-
covered as the result of a textbook canonical quantization
of GR in Ashtekar variables.

|�, jl, vni

FIG. 1. A spin network and the “quanta of space” it describes.

The spin-networks Hilbert space is not an exotic ob-
ject. It is essentially nothing else than the conven-
tional Hilbert space of SU(2) lattice Yang-Mills the-
ory. Ashtekar has shown that the kinematics of GR can
be neatly cast into the same form as the kinematics of
SU(2) Yang-Mills theory. The other way around, the
Hilbert space of SU(2) Yang-Mills lattice theory admits
an interpretation as a description of quantized geome-
tries, formed by quanta of space, as we shall see in a
moment. This interpretation forms the content of the
“spin-geometry” theorem by Roger Penrose, and an ear-
lier related theorem by Hermann Minkowski. These two
theorems ground the kinematics of LQG.

Alternatively, this same Hilbert space can be seen as
the quantization of the moduli space of the flat SU(2)
connections on the topologically non-trivial manifold M⇤

obtained removing the one skeleton of a Regge triangula-
tion from the 3d space. In a Regge geometry, the connec-
tion is flat on M⇤, because curvature is concentrated on
the Regge bones. Therefore the moduli space describes
Regge geometries, which, in turn, can approximate Rie-
manian geometries arbitrarily well.

The resulting description of quantum space is a solid
part of LQG. It provides a clear mathematical and in-
tuitive picture of quantum space, and it is used in all
versions of the theory.

Its most remarkable feature is the discreteness of the
geometry at the Planck scale, which appears in this con-
text as a rather conventional quantization e↵ect: In GR,
the gravitational field determines lengths, areas and vol-
umes. Since the gravitational field is a quantum operator,
these quantities are given by quantum operators. Planck
scale discreteness follows from the spectral analysis of
such operators.

To avoid a common misunderstanding, I emphasize
that the discreteness is not given by the fact that the
grains of space in Figure 1 are discrete objects. Rather,
it is given by the fact that the size of each grain is quan-
tized in discrete steps3, with minimum non-vanishing size
at the Planck scale. This is the key result of the theory,
which becomes later responsible of the UV finiteness of
the transition amplitudes.

2. Transition amplitudes

The covariant formulation of LQG is based on a con-
crete definition of the formal “sum over 4-geometries” of
the exponential of the GR action [7]

Z ⇠
Z

Dg e
i
~
R
R
p

g d4x. (1)

In the much simpler context of three Euclidean spacetime
dimensions, a beautiful and surprising definition of this
“sum over geometries” was found by Ponzano and Regge
in 1968 [8] and made rigorous by Turaev and Viro in 1992
[9]. The Ponzano-Regge theory fixes a triangulation � of
spacetime, assigns half integers, or spins, jf to each bone
(segment) f of � and is defined by the partition function

Z =
X

jf

Y

f

(2jf + 1)
Y

v

{6j} (2)

where v labels the tetrahedra of � and {6j} is the Wigner
6-j symbol (the natural invariant object of SU(2) repre-
sentation theory constructed with six spins). Interpret
the spins as assigning (discrete) lengths to the bones of a

3 The quantum aspect of a photon is not the discreteness of the
Fourier modes of the electromagnetic field in a box: it is the fact
that the energy of each mode is quantized in multiples of h⌫.

Figure 5: “Granular" space. A node n determines a “grain" or “chunk" of space.

The geometry represented by a state |Γ, jl,vn〉 is a quantum geometry for three distinct reasons.
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i. It is discrete. The relevant quantum discreteness is not the fact that the continuous geometry
has been discretized —this is just a truncation of the degrees of freedom of the theory. It is
the fact that area and volume are quantized and their spectrum turns out to be discrete. It is
the same for the electromagnetic field. The relevant quantum discreteness is not that there
are discrete modes for the field in a box: it is that the energy of these modes is quantized.

ii. The components of the Penrose metric operator do not commute. Therefore the spin network
basis diagonalizes only a subset of the geometrical observables, precisely like the | j,m〉 basis
of a particle with spin. Angles between the faces of the polyhedra are quantum spread in this
basis.

iii. A generic state of the geometry is not a spin network state: it is a linear superposition of
spin networks. In particular, the extrinsic curvature of the 3-geometry10, which, as we shall
see later on, is captured by the group elements hl , is completely quantum spread in the
spin network basis. It is possible to construct coherent states in HΓ that are peaked on a
given intrinsic as well as extrinsic geometry, and minimize the quantum spread of both. A
technology for defining these semiclassical states in HΓ has been developed by a number of
authors, yielding beautiful mathematical developments [52, 53, 54, 55, 46]. I sketch some
basic ideas below in Section 4.1.

2.8 The Planck scale

So far, I have not mentioned units and physical dimensions. The gravitational field gµν has
the dimensions of an area.11 The dimension of the Ashtekar’s electric field E (the densitized in-
verse triad), is also an area. The geometrical interpretation described above depends on a unit of
length Lloop, which characterizes the theory. For instance, in, say, centimeters, the minimum area
eigenvalue a 1

2
will have the value

a 1
2
=

√
3

2
L2

loop. (2.35)

and the metric operator will be defined by

Gll′ = L4
loop

~Ll ·~Ll′ (2.36)

What is the value of Lloop? The Hilbert space and the operator algebra described here can be derived
from a canonical quantization of GR. In this case~Ll is easily identified with the flux of the Ashtekar
electric field, or the densitized triad, across the polyhedra faces, and canonical quantization fixes
the multiplicative factor to be

L2
loop = 8πγ h̄G (2.37)

where γ , the Immirzi-Barbero parameter is a positive real number, G is the Newton constant. This
relation may be affected by radiative corrections (the Newton constant may run between Planck

10In canonical general relativity the extrinsic curvature of a spacelike surface is the quantity canonically conjugate
to the intrinsic geometry of the surface.

11This follows from ds2 = gµν dxµ dxν and the fact that it is rather unreasonable to assign dimensions to the co-
ordinates of a general covariant theory: coordinates are functions on spacetime, that can be arbitrarily nonlinearly
transformed. For instance, they are often angles.
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scale and the infrared), therefore it is more prudent to keep L2
loop as a free parameter in the theory

for the moment. It is the parameter that fixes the scale at which geometry is quantized.

Problem: Using (2.37) and assuming γ ∼ 1, compute how many four-valent quanta of space are needed to fill the volume
of a proton Vp ∼ 1 f m3 = (10−15m)3, if no spin jl is larger than 1

2 . Can a single quantum of space have volume Vp?

2.9 Boundary states

The states in H can be viewed as describing quantum space at some given coordinate time.
A more useful interpretation, however, and the one I adopt here, is to take them to describe the
quantum space surrounding a given 4-dimensional finite region R of spacetime. This second inter-
pretation is more covariant and will be used below to define the dynamics. That is, a state in H is
not interpreted as “state at some time", but rather as a “boundary state". See Figure 6.

Figure 6: The state described by a spin network can be taken to give the geometry of the three dimensional
hypersurface surrounding a finite 4d spacetime region.

In the non-general-relativistic limit, therefore, H must be identified with the tensor product
H ∗

f in⊗Hinit of the initial and final state spaces of conventional quantum theory.

Problem: Consider a single harmonic oscillator in its first excited state. Write explicitly its boundary state for the region
t ∈ [0,T ].

This is the quantum geometry at the basis of loop gravity. Let me now move to the transition
amplitudes between quantum states of geometry.

3. Transition amplitudes

3.1 Elementary math: SL(2,C)
I start with a few notions about SL(2,C), the (double cover of the) Lorentz group SO(3,1). SL(2,C) is a six

dimensional group. I denote by ψ the spinors of the fundamental representation defined on C2 by the 2× 2 complex
matrices with unit determinant. By v the vectors in the 4d real representation defined on Minkowski space by the Lorentz
transformations. And by J the antisymmetric tensors in the adjoint representation (as the electromagnetic field).

It is convenient to study SL(2,C) by choosing a “rotation" subgroup H = SU(2) ⊂ SL(2,C). Choosing an SU(2)
subgroup in SL(2,C) is like choosing a Lorentz frame in special relativity. In the vector representation H leaves a
timelike vector t invariant, and we can choose Minkowski coordinates where, say t = (1,0,0,0). Then we can distinguish
the time space components of any vector v = v0t +~v, where~v = (0,vi), i = 1,2,3 is orthogonal to t. In the fundamental
representation a choice of H is equivalent to the choice of a scalar product. H is given by the matrices unitary with
respect to this scalar product. A change of Lorentz frame is equivalent to rotation of the scalar product in C2. Given a
scalar product 〈ψ|φ〉= gABψAφ B, we can choose a basis in C2 where g = 1l. The relation between the choice of basis in
C2 and in Minkowski space is given by the Clebsch-Gordan map v→ v01l+ viσi.

In the adjoint representation, a basis in the SL(2,C) algebra is formed by the generators Li of the SU(2) rotations
and the corresponding boost generators Ki. Any group element can be written in the form

g = eα iτi+iβ iτi (3.1)
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The left invariant vector fields are then given by

Liψ(h)≡ i
d
dt

ψ(hetτi)

∣∣∣∣
t=0

, Kiψ(h)≡ i
d
dt

ψ(heitτi)

∣∣∣∣
t=0

. (3.2)

The two Casimirs of the group are~L ·~K and |~L|2−|~K|2.
The finite-dimensional representations of SL(2,C) are non-unitary. For instance the Minkowski “scalar product"

x · y = x0y0− x1y1− x2y2− x3y3 is not a scalar product, because it is not positive definite. LQG uses instead unitary
representations of SL(2,C), which are infinite dimensional. These can be studied for instance in [56] or [57]. Roberto
Pereira’s thesis [58] is also very useful for this. Here I give the essential information about these representations.

Unitary representations of SL(2,C) are labeled by a spin k and a positive real number p. The representation
spaces are denoted Hp,k. The two Casimirs take the values 2pk and p2− k2, respectively, on Hp,k. Each Hp,k can be
decomposed into irreducibles of the SU(2) subgroup as follows

Hp,k =⊕∞
j=k H j

p,k (3.3)

where H j
p,k is a (2j+1) dimensional space that carries the spin- j representation of SU(2). A useful basis in Hp,k is

obtained diagonalizing the total spin and the third component of the spin of the SU(2) subgroup. States in this basis can
be written as |p,k; j,m〉. The representation matrices Dpk(g) in this basis have the form Dpk(g) jm

j′m′ . The representation
matrices Dpk(g) span a linear space of functions on SL(2,C). As elements of this space, they can be written in Dirac
notation as

〈g|p,k;( j,m),( j′m′)〉= Dpk(g) jm
j′m′ . (3.4)

χ p,k(g) = tr[Dpk(g)] is the SL(2,C) character in the (p,k) unitary representation. (This is generally a distribution on the
group, since the representation spaces are infinite dimensional.)

Of particular importance in LQG is a subspace of this space of functions. This is the space spanned by the
subspaces H j

p,k where
p = γ j, k = j; (3.5)

that is, the space

Hγ =⊕ j

(
(H j

γ j, j)
∗⊗H j

γ j, j

)
. (3.6)

In other words, this is the space of functions on SL(2,C) of the form

ψ(g) = ∑
j,mn

c j,mm′ Dγ j, j(g) jm
jm′ . (3.7)

equivalently
|ψ〉= ∑

j,mn
c j,mm′ |γ j, j;( j,m),( jm′)〉. (3.8)

The space Hγ has two remarkable properties

- It is naturally isomorphic to L2[SU(2)]. The map

Yγ : | j,m,n〉 7→ |γ j, j;( j,m),( j,n)〉 (3.9)

sends L2[SU(2)] onto Hγ . This map is clearly SU(2) covariant.

- For all ψ,φ ∈ Hγ , we have [59, 60, 61]
〈ψ|~K + γ~L|φ〉 ∼ 0. (3.10)

where ∼ means that the relation holds in the large j limit (which, as we shall see later on is the semiclassical
limit of the quantum theory). The relation

~K + γ~L = 0. (3.11)

has an important meaning in quantum gravity, because, as we shall see in Section 5.1 it is precisely the “simplicity
condition" that reduce BF theory to GR — see equation (5.8).
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Problem: (Important) Compute the value of the two Casimirs if ~K + γ~L = 0 and show that this implies (3.5).

The space Hγ has a natural Hilbert space structure, inherited from (3.9). Notice, however that it is not a subspace of
the Hilbert space of square integrable functions L2[SL(2,C)]. This is because it is formed by a discrete linear combination
of functions with a sharp value of p, which is a continuous label. In other words, it is like a space of linear combinations
of delta functions.12

Consider a graph Γ and a function ψ(hl) of SU(2) group elements on its links. The map Yγ extends immediately
(by tensoring it), and sends ψ(hl) to a (generalized) function of Yγ ψ(gl) of SL(2,C) elements. This is not SL(2,C)
invariant at the nodes, but we can make it gauge invariant by integrating over a gauge action of SL(2,C). That is, denote

PSL(2,C)ψ(gl) =
∫

SL(2,C)N
dg′n ψ(gs(l)glg

−1
t(l)). (3.12)

where the prime on dgn indicates that one of the edge integrals is dropped (it is redundant). Thus, the linear map

fγ := PSL(2,C) ◦Yγ (3.13)

sends SU(2) spin networks into SL(2,C) spin networks. In particular, ( fγ ψ)(1ll) is a linear functional on the space of
SU(2) spin networks. By linearity

( fγ ψ)(1ll) =
∫

dhl ψ(hl)Aγ (hl) (3.14)

An explicit calculation (see below) shows that this can be written in the form

Av(hl) =
∫

SL(2,C)
dg′n ∏

l
K(hl ,gsl g

−1
tl ) (3.15)

where l are the links and n the nodes of Γ and the kernel K is

K(h,g) = ∑
j

∫

SU(2)
dk d2

j χ j(hk) χ
γ j, j(kg). (3.16)

We use this below.

Problem: (important) Show that the last two equations give (3.14). [Track: from the definition of the characters

K(h,g)=∑
j

∫

SU(2)
dk d2

j Tr[D j(h)D j(k)] Tr[Dγ j, j(k)Dγ j, j(g)] (3.17)

but since k ∈ SU(2), Dγ j, j(k) j′m
j′′m′ = δ

j′
j′′ D j(k)m

m′ , so that, using (2.3), the integration over k gives

K(h,g) = ∑
j

d j D j(h)m
m′ D

γ j, j(g) jm′
jm, (3.18)

or, using the definition (3.9) of Yγ ,
K(h,g) = ∑

j
d j Tr[D j(h)Y †

γ Dγ j, j(g)Yγ ]. (3.19)

Inserting this into (3.15) gives

Av(hl) =
∫

SL(2,C)
dg′n ∏

l
∑

j
d j Tr[D j(hl)Y

†
γ Dγ j, j(gsl g

−1
tl )Yγ ]. (3.20)

Using this, the right hand side of (3.14) reads
∫

SU(2)
dhl ψ(hl)

∫

SL(2,C)
dg′n ∏

l
∑

j
d j Tr[D j(hl)Y

†
γ Dγ j, j(gsl g

−1
tl )Yγ ]. (3.21)

12The relation (3.10) is exactly true (not just in the large j limit) if we replace p = γ j by p = γ( j + 1). This
alternative has been considered in the literature, but it seems to lead to problems in relating the dynamics of graphs to
that on subgraphs. Sergei Alexandrov has noticed that Hγ is not the only subspace with these properties. It is the first
of a family of spaces H r

Γ
, defined by p = γ( j+r)( j+r+1)/ j, k = j+r, j̃ = j+r, with any integer r. The parameter r

determines a different ordering of the constraints, and I do not consider it here. On this, see [61].
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On the other hand, using the definitions, we have

(Yγ ψ)(gl)=∑
j

d j

∫

SU(2)
dhl ψ(hl)∏

l
Tr[D j(hl)Y

†
γ Dγ j, j(gl)Yγ ] (3.22)

and the left hand side of (3.14) gives

( fγ ψ)(gl) = (PSL(2,C)Yγ ψ)(g) =

=
∫

SL(2,C)
dg′n ∑

j
d j

∫

SU(2)
dhl ψ(hl)∏

l
Tr[D j(hl)Y

†
γ Dγ j, j(gsl glg

−1
tl )Yγ ]

which is equal to (3.21) when gl = 1ll .]

Finally, observe that the map fγ defined in (3.13) sends SU(2) intertwiners to SL(2,C) intertwiners. Indeed Yγ

sends tensors that transform under SU(2) representations into tensors that transform under SL(2,C) representations,
and PSL(2,C) projects these tensors on their SL(2,C) invariant subspace.

3.2 Elementary math: 2-complexes
A (combinatorial) two-complex C = (F ,E ,V ,∂ ) is defined by a finite set F of F elements f called “faces", a

finite set E of E elements e called “edges", a finite set V of V elements v called “vertices", and a boundary relation ∂

that associates to each edge an ordered couple of vertices ∂e = (se, te)) and to each face a cyclic sequence of edges. A
cyclic sequences of edges is a sequence of n f edges or reversed edges e such that ten = sen+1 with n f +1 = 1.

The boundary Γ = ∂C of a two-complex C is a (possibly disconnected) graph Γ, whose links l are edges of C

bounding a single face and whose nodes n are vertices of C bounding (links and) a single internal edge.
For each vertex v, call Γv the graph formed by intersection of the two-complex with a small sphere surrounding it.
The same definitions of automorphisms and partial order I gave for the graphs hold for the two-complexes. In

particular, it makes sense to define the limit
f∞ = lim

C→∞
fC (3.23)

of a function that depends on a complex.
A two-complex can be visualized as a set of polygons f meeting along edges e in turn joining at vertices v (see

Figure 7).

v

f

e

Figure 7: A two-complex with one internal vertex.

Recall that in 3d, a geometrical picture can be obtained observing that the dual to a cellular decomposition of
space defines a graph. The same will be true for two-complexes in 4d: the dual of a cellular decomposition of spacetime
defines a two-complex.13 Vertices can be thought as dual to 4d cells in spacetime. Edges are dual to 3d cell bounding
the 4d cells. Importantly, faces are dual to the surfaces to which we have assigned areas in 3d.

Notice that boundary relations then hold correctly: An edge hitting the boundary of the two-complex is simply a
3d cell that happens to sit on the boundary of a 4d cellular decomposition of spacetime. A face hitting the boundary of
the two-complex is a 2d surface that sits on the boundary. Thus, for instance a 2d surface in spacetime is represented by
a link l in the 3d graph, but it is represented by a face f in the 4d complex. If the surface is on the boundary, l is bounds
f .

We now have all the ingredients for defining the transition amplitudes of quantum gravity.

13The two-complex is the two-skeleton of the dual: its elements of dimension 0, 1 and 2.
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3.3 Transition amplitudes

As mentioned in the introduction, the Ponzano-Regge partition function of 3d quantum gravity
on a triangulation ∆ is defined by

ZC = ∑
j f

∏
f
(2 j f +1) ∏

v
{6 j}. (3.24)

Each tetrahedron v of ∆ has four triangles e, each bounded by three Regge bones f . Let j1, j2, j3
be the spins of the three bones around the triangle e. In the dual two-complex C , v is a vertex
where four edges e meet, and each edge bounds three faces f . The intertwiner space Ke =K j1, j2, j3

is one-dimensional. Let ve be the single (normalized) intertwiner in K j1, j2, j3 . The Wigner {6 j}
symbol is defined by

{6 j}= Tr [⊗e∈vve] (3.25)

The trace is taken on the repeated tensors indices (two indices in each representation, because each
Regge bone f joins two triangles of the tetrahedron v.)

Let me now come to the main point of these lectures: the definition of the partition function of
4d Lorentzian LQG. This is defined by

ZC = ∑
j f ,ve

∏
f
(2 j f +1) ∏

v
Av( j f ,ve), (3.26)

where C is a two-complex with faces f , edges e and vertices v, the intertwiners ve are in the space
Ke = K j f1 ... j f1

where f1, ..., fn are the faces meeting at the edge e and

Av( j f ,ve) = Tr
[
⊗e∈v( fγve)

]
. (3.27)

where fγ is given in (3.13) and γ is a dimensionless parameter that characterizes the quantum theory,
called Immirzi, or Barbero-Immirzi, parameter. This is the definition of the covariant dynamics of
LQG.

Notice that the theory is entirely determined by the imbedding Yγ of SU(2) functions into
SL(2,C) functions, defined in section 3.1, see equation (3.9). An intuitive track for understanding
what is happening is the following. If we erase fγ in (3.27) we obtain the Ooguri quantization of BF
theory [62]. A shown above in 3.1, fγ implements equation (3.11), which is precisely the relation
that transforms BF theory into general relativity, as shown in detail below in 3.1.

The trace in (3.27) requires a bit of care, due to the infinite dimensionality of the SL(2,C)

representations involved. To make this explicit, I write the same partition function in an equivalent
form:

ZC =
∫

SU(2)
dhv f ∏

f
δ (h f ) ∏

v
Av(hv f ). (3.28)

Here h f = ∏v∈ f hv f is the oriented product of the group elements around the face f and the vertex
amplitude is given by (3.15) and (3.16), which I repeat here for completeness:

Av(hl) =
∫

SL(2,C)
dg′n ∏

l
K(hl,gsl g

−1
tl ) (3.29)

K(h,g) = ∑
j

∫

SU(2)
dk d2

j χ j(hk) χ
γ j, j(kg). (3.30)
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The last three equations define the partition function in a completely explicit manner.
Using the problem at the end of Section 3.1, we see that the vertex amplitude for a spin-network

state ψ on Γv, namely around a vertex, can be also written in the compact form

Av(ψ) = ( fγψ)(1l). (3.31)

Problem: Show that (3.27) and (3.31) are equivalent.

The transition amplitudes are obtained by choosing a two-complex C with a boundary, and
are functions of the boundary coloring. In the spinfoam basis (3.26), they read

ZC ( jl,vn) = ∑
j f ,ve

∏
f
(2 j f +1) ∏

v
Av( je,vn), (3.32)

where l and n are the boundary links and nodes. In the group basis, they read

ZC (hl) =
∫

SU(2)
dhv f ∏

f
δ (h f ) ∏

v
Av(hv f ). (3.33)

where hl is an SU(2) group element for each boundary link. These expressions define truncations
of the full transition amplitudes. The full physical transition amplitude is

Z(hl) = lim
C→∞

ZC (hl). (3.34)

In a general-covariant quantum theory, the dynamics can be given by associating an amplitude to
each boundary state [23, 63]. This is determined by the linear functional W on H . The modulus
square

P(ψ) = |〈Z|ψ〉|2 (3.35)

determines (with suitable normalization) the probability associated to the process defined by the
boundary state ψ . In Section 4 I show how these can be used to compute the probability of inter-
esting physical processes.

In the definition I have given, there is no restriction on the two-complex C . On physical grounds, this may be too
general, and it may prove necessary to restrict the class of two complexes to consider [64]. A natural choice is to demand
that C comes from a cellular decomposition.

3.4 Properties and comments

The most important property of the vertex amplitude (3.31) is that it appears to yield the
Einstein equations in the large distance classical limit. There is a number of result in the literature
supporting this indication. The relation between the vertex amplitude (3.31) and the action of
general relativity has been first studied in the Euclidean context (not discussed here) [65, 66, 67]
and then extended to the relevant Lorentzian domain [58]. For a five-valent vertex (dual to a 4-
simplex), it has been shown that the amplitude is essentially given by the exponential of the 4d
Regge action in an appropriate semiclassical limit [68].

Av ∼ eiSRegge (3.36)
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To understand this relation, observe that the amplitude is a function of the boundary state, and this
can be chosen to be peaked on a given boundary geometry of a flat Regge cell. The corresponding
Regge action is then well defined.

The result can be extended to arbitrary triangulations, showing that the spinfoam sum is dom-
inated by configurations that admit a Regge interpretation and whose amplitude is given by the
exponential of the Regge action [69, 70, 71]. All these results hold in the semiclassical regime
of large quantum numbers. For small spins (small distances), the theory departs strongly form
naive quantum Regge calculus, in particular, the discreteness of the spins implements the intrinsic
short-distance cut-off, which is not present in naive quantum Regge calculus.

I do not give the explicit derivation of these results here. The key technique used is to write the amplitude as an
integral over group elements and spheres, write the integrand as an exponential (this is done in Appendix B.5), and then
notice that for large spins we are in the regime where a saddle point approximation holds. A good detailed technical
introduction to these calculation techniques is Roberto Pereira thesis [58]. See also [72, 73, 71].

The evidence for the emergence of the Regge action is now multifold. Several issues remain
open. For instance, the limit has not been studied for two complexes that are not dual to triangula-
tions.

In [65] it was shown that Av ∼ eiSRegge + e−iSRegge , and concern has been raised by the appearance of the two terms.
This concern is excessive in my opinion, for two reasons. First, in the holomorphic representation (see below) only one
of the terms in survives [68]. This is because of the ubiquitous mechanism of phase cancellations between propagator
and boundary state in quantum mechanics. See [74] for a discussion of this mechanism. Therefore the existence of
different terms in does not affect the classical limit. Second, the amplitude of the theory should include both terms. This
appears clearly in the three dimensional Ponzano Regge theory [10] as well as in low dimensional models [75], and is
related to the fact that the classical dynamics does not distinguish propagation “ahead in (proper) time" or “backward in
(proper) time", in a theory where coordinate time is an unphysical parameter.14

The emergence of the Einstein theory from a natural group structure based on SU(2)⊂ SL(2,C)
is certainly surprising. The skepticism prompted by this surprise may be tempered by two consid-
erations. The first is that the same happens in QED. The simple vertex amplitude

〈A|ψA
e1
(p1),ψ

B
e2
(p2),ψ

γ

µ(k)〉 = (3.37)

= e γ
AB
µ δ (p1+p2+k)

codes the full complexity of the interacting Dirac-Maxwell field equations. In other words, QED,
with its fantastic phenomenology and its 12 decimal digits accurate predictions, is little more
than momentum conservation plus the Dirac matrices γAB

µ , which, like fγ , are essentially Clebsch-
Gordan coefficients.

14It is sometime argued that the presence of the two terms follows from the fact that one has failed to select the
“positive energy" solutions in the quantization. But such a selection makes sense only in the context of the specific
strategy for quantization which consists in considering complex solutions of the classical equations and then discarding
solutions with “negative energy". This strategy is not available here, because of the absence of a preferred time and
energy. Other quantization strategies are available: we quantize the real solution space and keep all solutions. The
physical scalar product is determined by all real solutions with the proper symplectic structure, not by a “positive energy
sector" of the complex solutions. A simple system illustrating the situation is given in [75].
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The second consideration is that, as I discuss later on, general relativity is BF theory plus the
simplicity constraints. BF theory means flat curvature. Hence in a sense GR is flat curvature plus
simplicity conditions (see (5.8) below). The map fγ implements the simplicity conditions, since it
maps the states to the space where the simplicity conditions (3.10) hold; while the evaluation on
Gl = 1l codes (local) flatness.

The last observation does not imply that the theory describes flat geometries, for the same reason for which Regge
calculus describes curved geometries using flat 4-simplices. In fact, there is a derivation of the vertex (3.31) which
is precisely based on Regge calculus, and a single vertex is interpreted as a flat 4-simplex [18, 20]. In this derivation
one only considers 4-valent nodes and 5-valent vertices. The resulting expression naturally generalized to an arbitrary
number of nodes and vertices, and therefore defines the dynamics in full LQG. The existence of this generalization was
emphasized in [21].

It is interesting to observe that the form of the amplitude W is largely determined by general
principles: Feynman’s superposition principle, locality, and local Lorentz invariance [22].

1. Superposition principle. Following Feynman, we expect that the amplitude 〈Z |ψ〉 can be
expanded in a sum over “histories" Z(σ). The integral in (3.28) is like a truncated version
of a Feynman path integral, analogous to the integration over the group elements in lattice
QCD. The integration variables are precisely the SU(2) group elements that form a basis
in the Hilbert space of the theory. As mentioned, a given two-complex can also be viewed
as a history of quanta of spaces. The integration in (3.28) is then analog to the momenta
integration in Feynman diagrams.

2. Locality. We expect the amplitude Z(σ) of a single history to be built in terms of products
of elementary amplitudes associated to local elementary processes.15 This is the case for
the integrand of (3.28), which is a product of local face and vertex amplitudes. The face
amplitude δ (h f ) simply glues the different vertices amplitude. The non-trivial part of the
amplitude is in the vertex amplitudes Av.

3. Local Lorentz invariance. Classical GR has a local Lorentz invariance, and we expect the
individual spinfoam vertex to be Lorentz invariant in an appropriate sense. If spinfoams
states were SL(2,C) spin networks Ψ(gl),gl ∈ SL(2,C), gauge invariance could be easily
implemented by projecting on locally Lorentz invariant states with PSL(2,C). But the Hilbert
space HΓ has no hint of SL(2,C). So, to implement local Lorentz invariance, there should
be a map from HΓ to a Lorentz covariant language that characterizes the vertex. How? Well,
I have just constructed such a map in the previous section: it is the map Yγ , which depends
only on a single parameter γ . The vertex amplitude is then simply obtained from Yγ and
PSL(2,C), as expressed by (3.31).

The vertex amplitude (3.31) gives the probability amplitude for a single spacetime process,
where n grains of space are transformed into one another. It has the same crossing property as

15Notice that this is true for the Feynman integral amplitudes, which are exponential of integrals, namely limits of
exponentials of sums, which is to say (limits of) products of (exponentials of) terms which are local in spacetime, as well
as for the amplitudes of the QED perturbation expansion, which are products of vertex amplitudes and propagators. In
particular, in QED the QED vertex is the elementary dynamical process that gives an amplitude to the boundary Hilbert
space of the states of two electrons and one photon.
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standard QFT vertices. That is, it describes different processes, obtained by splitting differently
the boundary nodes into “in" and “out" ones. For instance if n = 5 (this is the case corresponding
to a 4-simplex in the triangulation picture), the vertex (3.31) gives the amplitude for a single grain
of space splitting into four grains of space; or for two grains scattering into three, and so on. See
Figure 8.

More precisely, the vertex 〈Av|ψ〉 gives an amplitude associated to the spacetime process de-
fined by a finite region of spacetime, bounded by a 3d region described by the state ψ: there is no
distinction between “in" and “out" states.

The expressions (3.28-3.31) define the quantum field theory of (pure) gravity.16 What remains
to do is to extract physics from this theory, and show that it gives general relativity in some limit.
Before discussing how to extract physical predictions from the formalism above, however, I add
below a brief sections on the TQFT aspect of the construction given.

Figure 8: Transition from nothing to four quanta of space and from a single quantum of space to three.

3.5 GR as a topological theory, II
In Section 2.4, I have mentioned the fact that (a truncation of) the kinematics GR can be given a topological

interpretation: the local degrees of freedom of a 3-metrics on a (topologically trivial) 3-manifold M can be approximated
by the global topological degrees of freedom of the topologically non-trivial manifold M ∗ obtained removing the Regge
bones from M .

The same idea works for the dynamics, and can be brought up to four dimensions. In 4d, Regge curvature is
concentrated in the triangles of a Regge triangulation, and the relevant topology is now captured by the two complex
dual to the triangulation. The faces of the two complex “wrap around" the Regge triangles and the holonomy around
these faces reads out the curvature on the triangles.

In fact, the entire structure of covariant LQG can be phrased in the language of Topological Quantum Field Theory,
as defined by Atiyah [76, 77] (for earlier ideas, see [30, 78]. A related point of view is in [79]).

In Atiyah’s scheme, an (n+ 1)-dimensional TQFT is as a functorial association of a finite dimensional Hilbert
space HΓ to each closed oriented n-manifold Γ, and a vector ZC ∈HΓ to each oriented (n+1)-manifold C having Γ as
its boundary [80, 81].

Similarly, quantum gravity in the covariant loop formalism can be defined à la Atiyah as the association (2.18) of a
Hilbert space HΓ to each oriented graph Γ, and of a vector ZC ∈HΓ, defined by (3.32), to each two-complex C having
Γ as its boundary. (Generalized) Atiyah axioms for this association require then

16Recalling the discussion in Section 2.3 on the convergence between the QED and the QCD picture, the truncation
determined by the choice of a given two simplex can be thought in two equivalent ways. Either as a background
independent analog of the truncation provided by a finite 4d lattice in QCD, or as a truncation in the order of the
Feynman diagrams, in a background-independent analog to the Feynman perturbative expansion. The two pictures turn
out to converge because physically a spacetime lattice is nothing else that a “history" of space quanta, in the same
sense in which a Feynman graph is a “history" of field quanta. In the first case, the two-complex can be thought as a
discretization of spacetime. In the second, as a particular Feynman history of quanta of space.
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• (multiplicativity) HΓ1∪Γ2 = HΓ1 ⊗HΓ2 ,
• (duality) H

Γ
= H ∗

Γ
and ZC = Z†

C ,
• (functoriality) ZC1∪ΓC2 = 〈ZC2

|ZC1〉HΓ
= 〈ZC1

|ZC2〉HΓ
,

where the overline means reversing the orientation, and C1 ∪Γ C2 is the gluing of two two-complexes via a common
boundary connected component Γ. See [77] for the details of the construction and a development of this point of view.

4. Extracting physics

A theory from which we cannot compute, is not a good theory. This is unfortunately the
case of many “quantum gravity" theories. Therefore this section is, in a sense, the most important
of all. The difficulty of computing in quantum gravity is very well known, and nearly mythical.
The problem is inherited from general relativity. Remember that Einstein himself got confused
on issues such as the interpretation of the Schwarzschild horizon and whether or not gravitational
waves (solution of the linearized Einstein equations) have any physical effect on matter. It took
decades to sort out whether or not the gravitational waves are real17

These conceptual intricacies, which make general relativity difficult, and interesting, are of
course amplified in quantum gravity. But, as they were eventually fully clarified for the classical
theory, I expect that clarity should be reached in the quantum theory as well.

The predictions of the theory are in its transition amplitudes. Given a boundary state, the
formalism presented above defines truncated transition amplitudes, namely associates probabilities
to boundary states (processes).

We are particularly interested in processes involving (background) semiclassical geometries.
Since the formalism is background independent, the information about the background over which
we are computing amplitude must be fed into the calculation. This can only be done with the choice
of the boundary state.

Consider a three-dimensional surface Σ with the topology of a three sphere. Let (q,k) be the
three-metric and the extrinsic curvature of Σ. The classical Einstein equations determine uniquely
whether or not (q,k) are physical: that is, whether or not there exist a Ricci-flat spacetime M (a
solution of the Einstein equation) which is bounded by (Σ,q,k).

This is the extension of the Hamilton-function formulation of dynamics to general covariant field theory. Calling
q, p the coordinate and momenta at initial time t and q′, p′ at a final time t ′, dynamics is fully captured by the conditions
the quadruplet (q, p,q′, p′) must satisfy in order to bound a physical trajectory. For a free particle, for instance, these are
p = p′ = m(q′−q)/(t ′− t).

These relations can be directly deduced from the Hamilton function S(q, t,q′, t ′), using p = ∂S/∂q and p′ =
∂S/∂q′. The Hamilton function is the royal tool for quantum gravity. I recall that in general the Hamilton function
is the value of the action on solutions of equations of motion, viewed as a function of the boundary extended config-
uration variables (that is, configurations variables plus time). For instance, the Hamilton function of a free particle is
S(q, t,q′, t ′) = m(q′−q)2/2(t ′− t). The Hamilton function is directly related to the quantum mechanics amplitude W by
the small h̄ expansion W ∼ e

i
h̄ S. For a full discussion of this way of writing dynamics in general covariant language, see

Chapters 3 and 4 of [82].

17It was only with Bondi in the 60’ that the problem was clarified. As Bondi put it, in principle “you can boil a cup
of water with gravitational waves".
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The quantum theory assigns an amplitude to any semiclassical boundary state peaked on a
given boundary geometry (q,k), and for classical GR to be recovered this amplitude must (in the
semiclassical regime) be suppressed if (Σ,q,k) does not bound a solution of the Einstein equa-
tions.18

Now, consider a (normalized) semiclassical boundary state ψ(q,k) that approximates the classi-
cal geometry (q,k) (these states are discussed in detail in the following section). If q,k is a solution
of the Einstein equations, we must expect that, within the given approximation

P(ψ(q,k)) = |〈W |ψ(q,k)〉|2 ∼ 1. (4.1)

Next, if we modify the state ψ(q,k) with field operators E1, ...,En, then the amplitude

W(q,k)(E1, ...,En) = 〈W |E1...En|ψ(q,k)〉. (4.2)

can be interpreted as a scattering amplitude between the n “particles" (quanta) created by the field
operators E over the spacetime M . (The possibility of using the notion of “particle" in this context
is discussed in detail in [83].) Since we know how to write the gravitational field operator (the
triad), we can in principle compute graviton n-point functions in this way. To use this strategy, we
must learn how to write semiclassical states in HΓ; this is the topic of the next section.

4.1 Coherent states

The relation between quantum states and the classical theory is clarified by the construction of
coherent states. These are particularly valuable in the present context, where the relation with the
classical theory is more indirect than usual. Various classes of coherent states have been studied.
Here I describe the “holomorphic" coherent states, developed by a number of people [84, 85, 52, 86,
87] and recently discussed in detail by Bianchi-Magliaro-Perini [55], as well as the “semi coherent"
states of Livine-Speziale (LS) [17].

Holomorphic states are labelled by an element Hl of SL(2,C) for each link l.19. They are
defined by

ψHl (hl) =
∫

SU(2)N
dgn

⊗

l∈Γ

Kt(gs(l)Hlg−1h−1
l ). (4.3)

Here t is a positive real number and Kt is (the analytic continuation to SL(2,C) of) the heat kernel
on SU(2), which can be written explicitly as

Kt(g) = ∑
j
(2 j+1)e− j( j+1)t Tr[D j(g)] (4.4)

where D j is the (Wigner) representation matrix of the representation j.

These states are analogous to the standard wave packets of non-relativistic quantum theory

ψxo po(x) = e−
(x−xo)2

2σ
−ipox, (4.5)

18Cfr: in the non-relativistic theory, if ψq,p is a coherent state peaked on q, p, then 〈W |ψq′,p′ ⊗ ψq,p〉 ≡
〈ψq′,p′ |e−iH(t ′−t)|ψq,p〉 is suppressed unless the conditions mentioned above are satisfied.

19They are a special case of Thiemann’s complexifier coherent states [52, 86, 87]
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which are peaked in position as well as momentum. Notice that ψxo po(x) can be written as a gaussian peaked on a
complex position

ψxo po(x)∼ e−
(x−h)2

2σ , (4.6)

where
h = xo + iσ p0. (4.7)

The coherent states (4.3) have the very same structure: they are given by a gaussian over the group, peaked on a complex
extension of the group. Here the complex extension is SL(2,C) . To see that (4.4) is indeed a Guassian, notice that it
is the heat kernel on the group: for t = 0 is reduces to a delta function, while each j mode decays proportionally to the
Casimir, which is the Laplacian on the group.

The SL(2,C) labels Hl can be given two related interpretations. First, we can decompose each
SL(2,C) label in the form

Hl = e2itLl hl (4.8)

where Ul ∈ SU(2) and El ∈ su(2). Then it is not hard to show that Ul and El are the expectation
values of the operators Ul and Ll on the state ψHl

〈ψHl |hl |ψHl 〉
〈ψHl |ψHl 〉

= hl ,
〈ψHl |Ll |ψHl 〉
〈ψHl |ψHl 〉

= Ll , (4.9)

and the corresponding spread is small.20

Alternatively, we can decompose each SL(2,C) label in the form

Hl = ns,l e−i(ξl+iηl)
σ3
2 n−1

t,l . (4.10)

where n ∈ SU(2). Let~z = (0,0,1) and~n = D1(n)~z. Freidel and Speziale discuss a compelling ge-
ometrical interpretation for the (~ns,~nt ,ξ ,η) labels defined on of each link by (4.10) [88] (see also
[89, 90, 91]). For appropriate four-valent states representing a Regge 3-geometry with intrinsic and
extrinsic curvature, the vectors~ns,~nt are the 3d normals to the triangles of the tetrahedra bounded
by the triangle; η is the area of the triangle divided by 8πγGh̄; and ξ is a sum of two parts: the
extrinsic curvature at the triangle and the 3d rotation due to the spin connection at the triangle. This
last part can be gauged away locally, but cannot be disregarded globally [92].) For general states,
the interpretation extends to a simple generalization of Regge geometries, that Freidel and Speziale
have baptized “twisted geometries".

Freidel and Speziale give a slightly different definition of coherent states [88]. The two definitions converge for
large spins, but differ at low spins. It would be good to clarify their respective properties, in view of the possible
applications in scattering theory (see below).

Of great use are also the Livine-Speziale (LS) “semi-coherent" states. They are defined as follows. The con-
ventional magnetic basis | j,m〉 with m = − j, ..., j, in H j diagonalizes L3. Its highest spin state | j, j〉 := | j,m = j〉
is a semiclassical state peaked around the classical configuration ~L = j~z of the (non commuting) angular momentum
operators. If we rotate this state, we obtain a state peaked around any configuration~L = j~n. The state

| j,n〉= D j(n)| j, j〉= ∑
m

D j
jm(n)| j,m〉, (4.11)

is a semiclassical state peaked on~L = j~n = jD1(n)~z.

20Restoring physical units, ∆Ul ∼
√

t and ∆El ∼ 8πγ h̄G
√

1/t. If we fix a length scale L�
√

h̄G and choose t =
h̄G/L2� 1, we have then ∆Ul ∼

√
h̄G/L and ∆El ∼

√
h̄GL, which shows that both spreads go to zero with h̄.
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The states (4.11) are generally denoted as
| j,~n〉 := | j,n〉. (4.12)

where ~n = D j(n)~z. I find this notation confusing. The problem is of course that there are many different n (many
rotations) that yield the same ~n, therefore the state | j,~n〉 is not defined by this equation. The common solution is to
choose a “phase convention" that fixes a preferred rotation n̂ for each~n. For instance, one may require that D1(n̂) leave
~z×~n invariant. I would find it clearer, even after such a phase convention has been chosen, to still add a label to the
notation (4.12), say for every rotation nφ that leaves~n invariant,

| j,~n,φ〉 := | j,nφ n̂〉= ei jφ | j, n̂〉. (4.13)

The reason is that this phase has a physical interpretation: it codes the extrinsic curvature at the face.
LS states are states in Hn, where n is v-valent (unfortunate notation: here n indicates a node, not an SU(2) element

as above), labelled by a unit vector~nl for each link l in n, defined by

| jl ,~nl〉=
∫

SU(2)
dg
⊗

l∈n

D jl (g)| jl ,~nl〉. (4.14)

The integration projects the state on Hn. These states are not fully coherent: they are eigenstates of the area, and the
observable conjugated to the area (which is related to the extrinsic curvature) is fully spread.

Remarkably, in [55] it is shown that for large ηl the holomorphic states are essentially LS states which are also
wave packets on the spins. That is

〈 jl ,~nl |ψHl 〉 ∼∏
l

e−
( jl− j0l )

2

2σl eiξl jl (4.15)

where~n and ~̃n are identified with the~n in s(l) and t(l) respectively and where 2 jl +1 = ηl/tl and σl = 1/(2tl). Thus, the
different coherent states that have been used in the covariant and the canonical literature, and which were long thought
to be unrelated, are in fact essentially the same thing.

In summary, the Hilbert space HΓ contains an (over-complete) basis of “wave packets" ψHl =

ψ~nl ,~n′l ,ξl ,ηl
, with a nice interpretation as discrete classical geometries with intrinsic and extrinsic

curvature.

4.2 Holomorphic representation

The coherent states define a natural holomorphic representation of HΓ [85, 68], which is par-
ticular useful in calculations. In this representation, states are represented by holomorphic functions
on SL(2,C)L

ψ(Hl) = 〈ψHl |ψ〉. (4.16)

The vertex amplitude takes a more manageable form when written in terms of coherent states.
First, it is easy to show that in terms of LS states, it reads

Av( jl,~nl,~n′l) =
∫

dg̃n
⊗

l

〈~nl|gs(l)g
−1
t(l)|~n′l〉(γ j, j) (4.17)

The scalar product is taken in the irreducible SL(2,C) representation H(γ j, j) and |~nl〉 is the coherent
state | j,~nl〉 sitting in the lowest spin subspace of this representation.

Second, the form of the vertex in the holomorphic basis defined by the coherent states (4.3)
can be obtained by combining the definition (3.29,3.30) of the vertex and the definition (4.3) of the
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coherent states. A straightforward calculation [68] gives

Av(Hl) ≡ 〈Wv |ψHl 〉 (4.18)

=
∫

SL(2,C)N
dg̃n ∏

l
P(Hl , gs(l)g

−1
t(l))

where
P(H,g)=∑

j
(2 j+1)e− j( j+1)t Tr

[
D( j)(H)Y †

γ D(γ j, j)(g)Yγ

]
. (4.19)

Here D( j) is the analytic continuation of the Wigner matrix from SU(2) to SL(2,C) and Yγ is defined
in (3.9). Eqs. (4.18, 4.19) give the “holomorphic" form of the vertex amplitude.

Problem: Show that (4.3) with (3.31) gives (4.18) and (4.19).

4.3 The euclidean theory
Before describing how to use the above definition of the dynamics, it is useful to introduce also “euclidean quantum

gravity", which is the model theory obtained from the one above by replacing SL(2,C) with SO(4). The representations
of SO(4) are labelled by two spins ( j+, j−). The theory is the same as above with the only difference that (3.5) is
replaced by

j± =
|1± γ|

2
(4.20)

and fγ maps H j into the lowest spin component of H j± if γ > 1, but to the highest spin component of H j± if γ < 1 (the
case γ = 1 is ill defined.) All the rest goes through as above. The vertex amplitude can be written in the simpler form

Av( jl ,~nl ,~n
′
l) =

∫
dg±n

⊗

l
∏
i=±
〈~nl |gi

s(l)(g
i
t(l))

−1|~n′l〉2 ji
(4.21)

where now the integration is over SU(2)N ×SU(2)N ∼ SO(4)N and the scalar product is in the fundamental representa-
tion of SU(2).

4.4 The two-complex expansion
“One can do an enormous amount by various approxi-
mations which are non-rigorous and unproved mathemat-
ically. [...] Historically, the rigorous analysis of whether
what one says is true or not comes many years later after
the discovery of what is true. [...]
Calculate without rigor, in an exploratory way; [...] don’t
be so rigorous or you will not succeed."
Richard Feynman 1957, addressing relativists at the
Chapel Hill Conference on General Relativity [93].

There is no physics without approximations. We need a way to compute transition amplitudes
perturbatively, as we do for instance order by order in QED, or with the use of finite lattices in nu-
merical lattice QCD. What approximations can be effective in the background-independent context
of quantum gravity? In this section and the next one a discuss this issue in some detail.

The theory is given by the formal limit of infinite refinement for transition amplitudes defined
on finite two-complexes. But we may not need to take the limit to extract approximate predictions
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from the theory.21 The amplitudes defined on a small two-complex can be a good approximation
in appropriate regimes of boundary states. Indications in this sense have appeared in concrete
examples (see below), and can be understood in general terms, as I discuss here.

The discretization of a physical system is an approximation that requires the introduction of
a discretization parameter a, the lattice spacing. The physical limit is recovered by appropriately
sending the number N of lattice sites to infinity and a to zero. The lattice spacing a can be absorbed
into a redefinition of dynamical variables and coupling constants – then we recover the continuum
limit by taking a coupling constant to a critical value, corresponding to a→ 0.

This behavior of discretized systems is common, but not universal. In a diff-invariant system
(or a system invariant under reparametrization of its evolution parameter), the structure of the
continuum limit can be substantially different. This is because, since coordinates are unphysical,
the size of the discretization parameter drops out from the dynamics entirely. The first consequence
is that the continuum limit is obtained solely from taking N to infinity, without any lattice spacing
or coupling constant to send to a critical value. The second consequence is more important. If there
is a regime where the system approaches a topological theory, then in this regime the discretization
becomes nearly exact, and N behaves an effective expansion parameter.

A simple example of this scenario is provided by the action of an harmonic oscillator [31],

S =
m
2

∫
dt

((
dq
dt

)2
−ω

2q2

)
. (4.22)

This can be discretized as

SN =
m
2 ∑

n
a

((
qn+1−qn

a

)2
−ω

2q2
n

)
. (4.23)

With rescaled dimensionless variables Qn =
√ m

ah̄ qn and Ω = aω , the dimensionless action reads

SN

h̄
=

1
2

N

∑
n=1

(
(Qn+1−Qn)

2−Ω
2Q2

n

)
(4.24)

and the continuum limit is obtained by sending N→∞ and Ω→ 0. But consider instead the parametrized version of the
same system

S =
m
2

∫
dτ

(
q̇2

ṫ
−ω

2ṫ q2
)

(4.25)

Its discretization gives

SN =
m
2

N

∑
n=1

a

(
( qn+1−qn

a )2

tn+1−tn
a

−ω
2 tn+1− tn

a
q2

n

)

=
m
2

N

∑
n=1

(qn+1−qn)
2

tn+1−tn
−ω

2(tn+1−tn)q2
n. (4.26)

which independent from a. The continuum limit is given by N → ∞ at fixed ω . We can define rescaled dimensionless

variables without using the lattice spacing, as Qn =
√

mω

h̄ qn and Tn = ωtn. These are defined in the natural units given
by the quantum dynamics itself (in general relativity these natural units are provided by the Planck length). This yields
the dimensionless action

SN

h̄
=

1
2

N

∑
n=1

(Qn+1−Qn)
2

Tn+1−Tn
− (Tn+1−Tn)Q2

n. (4.27)

21We do not need to sum up the full infinite series of Feynman graphs to extract viable approximate predictions from
QED.
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It is then shown in [31] that when the boundary values are in the regime

ω(t f − ti)�
∣∣∣∣
q f −qi

qi

∣∣∣∣, (4.28)

the exact transition amplitudes are well approximated by the ones computed with a discretized path integral with small
N. In other words, N is a good expansion parameter in this regime. In this regime, indeed, the kinetic term of the action
dominates. The corresponding “topological" theory is the discretized free action (4.26) with ω = 0, which is invariant
under refinement: its transition amplitudes are exactly independent from N.22

For gravity, this regime may be near flatness, where the Hamilton function of general relativity
approaches that of BF theory, which is topological. If the boundary state is sufficiently close to the
boundary data of a flat spacetime, the Hamilton function is close to that of BF theory, and a coarse
foam amplitude may approximate the exact one. Intuitively, any further refinment takes the (non-
suppressed) amplitudes closer to flatness, where the GR amplitude is the same as the BF amplitude.
But this is topological and invariant under a further refinement has no effect. This near-topological-
invariance in approaching a regime has been denoted “Ditt-invariance", from the work of Bianca
Dittrich, who has first pointed out its importance [95, 94, 96, 97, 98].

Recall also the theory approaches Regge gravity in the semiclassical limit. A single vertex
corresponds then to a flat 4-simplex. Cutting the theory to small N defines an approximation valid
around flat space, where relevant wavelengths are not much shorter than the bounded scattering
region R. More precisely, let C be the two-complex dual to a Regge triangulation, fix boundary
data for the Regge equations and let L be the maximal length of a bulk Regge bone and LR the
minimal curvature length on the classical solution to these equations. Then the small parameter in
which the foam expansion is taken is

θ ∼ L/LR (4.29)

which is essentially the largest value of the Regge deficit angle. Intuitively, a triangulation at a
scale smaller that the classical curvature scale suffices.

This picture is far from being rigorously demonstrated. But it justifies the exploration of the
expansion for small foams as a physical expansion. In other words, it is reasonable to take the
truncated transition amplitudes (3.32) as a family of approximations to the exact amplitudes, and
study whether the expansion in the complexity of the foam converges rapidly.

We can break the expansion in two steps: the graph expansion and the vertex expansion.

4.4.1 Graph expansion

Consider the component HΓ of H . Notice that because of the equivalence relation defined
in Section 2, all the states that have support on graphs smaller than (subgraphs of) Γ are already
contained in HΓ, provided that we include also the j = 0 representations. Therefore if we truncate
the theory to a single Hilbert space HΓ for a given fixed Γ, what we lose are only states that need
a “larger" graph to be defined. Let us therefore consider the truncation of the theory to a given
graph.23

22This is because the discretization is in the “perfect action" form, in the language of [94]. Notice that here the
perfect action is directly realized by the Hamilton function.

23The analog in QFT is to truncate the theory to the sector of Fock space with a number of particles less than a finite
fixed maximum number. It is important to stress that that virtually all calculations in perturbative QED are performed
within this truncation.
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What kind of truncation is this? It is a truncation of the degrees of freedom of general relativity
down to a finite number; which can be interpreted as describing the lowest modes on a mode ex-
pansion of the gravitational field on a compact space. Strictly speaking this is neither an ultraviolet
nor an infrared truncation, because the whole physical space can still be large or small. What are
lost are not wavelengths shorter than a given length, but rather wavelengths k times shorter than the
full size of physical space, for some integer k.

Therefore the truncation defines an approximation viable for gravitational phenomena where
the ratio between the largest and the smallest relevant wavelengths in the boundary state is small.24

A good indication supporting the viability of this expansion is given by a recent result in the
application of the formalism to cosmology: in it is shown in [99] that the large distance limit of the
transition amplitude in cosmology does not change if the boundary graph is refined.

Notice that the graph expansion resolves the apparent problem that the operators of the theory
are defined on HΓ rather than on H , since all calculation in this approximation can be performed
on a single graph.

4.4.2 Vertex expansion

The second part of the expansion in the number N of vertices of C .
Notice the similarity of this expansion with the standard perturbation expansion of QED. In

both cases, we describe a quantum field in terms of interactions of a finite number of its “quanta".
In the case of QED, these are the photons. In the case of LQG, these are the “quanta of space", or
“chunks of space", described in Section 2.7. In the QED case, individual photons can have small
or large energy; in the quantum gravity case, the quanta of space can have small or large volume.

In QED, one should be careful not to take the photon picture too literally when looking at the
semiclassical limit of the theory. For instance, the Feynman graph for the Coulomb scattering of
two electrons is given in Figure 9. But Figure 9 does not provide a viable picture of the contin-
uous electric field in the scattering region, nor of the smoothly curved trajectory of the scattering
electrons. Similarly, if we compute a transition amplitude between geometries at first order in the
vertex expansion, we should not mistake the corresponding spinfoam for a faithful geometrical
picture of the gravitational field in the corresponding classical spacetime.

Figure 9: Electromagnetic scattering of two electrons at first relevant order in QED.

An important issue regards the effect of the radiative corrections on the expansion. The QED
perturbative expansion is viable because the effect of all the radiative corrections due to the higher
frequency modes can be absorbed into the renormalization of a few parameters. Does the same

24A similar situation holds in numerical lattice QCD. The number of lattice sites concretely needed for a numerical
calculation is determined by the ratio between the smallest and largest wavelenghts involved in the phenomenon stud-
ied. For instance, in studying the proton mass it is determined by the ratio between the quarks and the pion Compton
wavelengths. [I thank Laurent Lellouch and Alberto Ramon for clarifications on this point.]
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happen in LQG? Preliminary calculations are encouraging: they indicate finite radiative corrections
of the vertex and corrections logarithmic in the cosmological constant (the IR cut-off) for the “self
energy" [100]25. But we need to understand this better.

4.5 Large distance expansion

An independent approximation can be taken by choosing the boundary to be large. This means
that the boundary state is peaked on a boundary geometry which is large compared with the Planck
length. In particular, we can chose holomorphic boundary states ψHl where ηl � 1 in each Hl .
Recall that η determines the area of the faces in Planck units (see equation (4.10) and the dis-
cussion that follows it). Therefore large η means that the states we consider describe results of
measurements of geometrical quantities that are large compared to the Planck area.

It is important not to confuse two distinct limits of the theory, and not to confuse two different
sources of discreteness. Let me begin by the limits.

Each two complex C defines a truncation of the theory. The full theory is recovered by the
continuous refinement limit C → ∞ as an expansion in the number of degrees of freedom. This
truncation can be done both in the quantum theory and in the classical theory. In the quantum
theory, the truncation is defined by the transition amplitudes ZC . In the classical theory, the trun-
cation is defined by Regge calculus on a triangulation (whose dual is) C . Each truncation gives an
approximation to the full dynamics, which is good as long as L� LR.

A separate, independent limit is the semiclassical limit. This is necessarily a large distance
limit, since there is no Planck scale semiclassical regime, because gravitational quantum fluctu-
ations are never smaller than expectation values at the Planck scale. In other words, a necessary
condition for the semiclassical limit is Bohr large quantum number conditions, which here becomes
large spins j→∞, therefore large distances compared to the Planck scale. This is the limit in which
L� LPlanck.

The semiclassical limit j→ ∞ can be taken at finite C . In this limit, the transition amplitudes
ZC converge to the dynamics of classical Regge calculus on C . More precisely, they converge to
the exponential of the Regge Hamilton function on C , as a function of the boundary geometry. In
synthesis:

C
on

tin
uo

us
lim

it
−−
−−
−−
−−
−−
−−
−−
−−
→ Full quantum

gravity (Z)
j→∞−−−→ General

Relativity

C
→

∞
−−
−→

C
→

∞
−−
−→

Truncated
amplitudes (ZC )

j→∞−−−→ Regge calculus
on C

Semiclassical limit−−−−−−−−−−−−−−−−−−−−−−−−→

Finally, recall that the truncation introduced by C should not be confused with the quantum
discreteness of the geometry. The quantum discreteness of the geometry is the fact that the geomet-

25When [100] was written, the choice of the face amplitude was still unclear. Later independent arguments were
found selecting the most favorable case (d j ∼ j) [101] .
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rical size of the cells of the complex takes discrete values. It disappears in the semiclassical limit,
where the theory is studied at distances large than the Planck scale, while it persists in the con-
tinuum limit, where an arbitrary large two-complex is considered. In other words, the refinement
of the cellular complex does make the size of the cells smoothly going to zero, because geometry
is physically discrete at the Planck scale. This is the most characteristic aspect of the quantum
gravity.

4.6 Some concrete calculation

Using the structure of approximations discussed above, some transition amplitudes have al-
ready been computed using the covariant theory. So far, the focus has been limited to the semiclas-
sical limit, in order to show that the formalism is viable, and that converges to the expected classical
quantities. I briefly mention here two series calculations, referring the reader to the literature for all
the details. The first is the derivation of classical cosmology from the full quantum gravity theory.
The second is the derivation of graviton n-point functions.

4.6.1 Cosmology

The classical dynamics of homogeneous and isotropic cosmology has been first derived from
the full quantum theory in [102] then with a cosmological constant in [103], and extended to ar-
bitrary regular boundary graphs in [99]. The idea of the calculation is simple. Consider a closed
universe with scale factor a(t) and derive the Friedman dynamics for a(t) from the full quantum
theory. To this aim, what we want to compute the transition amplitude between the initial and final
homogeneous isotropic geometry of a three-sphere. A well known classical solution of the prob-
lem, in the presence of a cosmological constant Λ and in the regime of large scale factor is given
by the deSitter solution.

a(t) = e
√

Λ

3 t , (4.30)

and therefore

ȧ =

√
Λ

3
a. (4.31)

ȧ is the proper time derivative of the scale factor, which is determined by the extrinsic curvature,
which is turn is the canonical variable conjugate to a. Consider a semiclassical state ψa,ȧ of quan-
tum geometry, peaked on an homogeneous geometry with scale factor a and on a certain value ȧ.
If the quantum dynamics has the correct classical limit, the quantum amplitude for this state must
be suppressed everywhere except in the region (4.31). Showing this is the aim of the calculation.26

Following the general approximation strategy outlined in the previous sections, we truncate
the theory down to a simple graph. In particular, we triangulate the 3-sphere with two tetrahedra

26Notice that in this case the dynamical equations do not rely final canonical coordinate and momenta with initial
ones; rather, they constrain the final coordinate and momenta among themselves. This can also be see from the factor-
ization of the Hamilton function of homogenous isotropic cosmology, which is easily computed inserting the deSitter
solution into the general relativity action with boundary terms, and reads

S(ai,a f ) =
2
3

√
Λ

3
(a3

f −a3
i ) , (4.32)

which is the sum of an initial and final term. Since at first order in h̄ the transition amplitude is the exponent of the
Hamilton function, we expect then the transition amplitude to factorize in this approximation.
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glued to one another through all their faces. The dual graph is Γ = ∆∗2, the “dipole" graph [104]
formed by two nodes connected by four links.

∆∗2 = r r p
We take two such dipole graphs, representing initial and final three-sphere, and select the simplest
non-trivial two-complex bounded by these. This is given by a single vertex, four edges and eight
faces and is represented by

r r

r r
u

This is the two-complex C whose amplitude gives the first approximation to the quantum transition
amplitude.27

We want to compute the transition amplitude between coherent homogenous isotropic states,
namely semiclassical wave packets peaked on a given coordinate and momentum. These will
depend on two variables, essentially a and ȧ, at each ∆∗2.

To build these semiclassical wave packets, we use the coherent state technology developed in
Section 4.1. To this aim, consider a regular (symmetric) triangulation of a metric 3-sphere, formed
by two regular tetrahedra joined along all their faces. Let ~nl, l = 1, ...,4 be four unit vectors
in R3 normal to the faces of a regular tetrahedron, that is, such that ~nl ·~nl′ = −1

3 . The isotropic
homogeneous states of a 3-sphere in this approximation are then the states

|z〉= |Hl(z)〉 (4.33)

where Hl(z) are given by
Hl(z) = ez~nl ·~τ . (4.34)

where z = c+ it p. Following Section 4.1, we recognize p as the area of the triangles of the tetra-
hedra, namely as a quantity proportional to a2, and c as a quantity proportional to the extrinsic
curvature, namely ȧ.

These coherent quantum states represent truncations of the GR degrees of freedom, but in-
clude more degrees of freedom than just the scale factor, because the geometry of the triangulation
captures more degrees of freedom of the metric than just the scale factor. A more refined graph
captures increasingly more degrees of freedom (these have been studied in [105], [92] and [99]).
The coherent states includes the relevant quantum fuzziness of these degrees of freedom, around
the classical homogenous isotropic configuration.

We are interested in the transition amplitude between two such states, that is

W (z,z′) = 〈W |(|z〉⊗ |z′〉). (4.35)
27In [64], the effect of some “wild" two-complexes has been considered, leading to to suggestions that some condi-

tions on the regularity of the two-complex are needed.
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Using the explicit form of the transition amplitude in this coherent state basis, given in (4.18), we
obtain [102]

W (z,z′) =
∫

SL(2,C)4
dg1...dg4 (4.36)

× ∏
l=1,4

∑
jl

d jl e
−t jl( jl+1)Pj(Hl(z),g1g−1

2 )

× ∏
l=1,4

∑
jl

d jl e
−t jl( jl+1)Pj(Hl(z′),g3g−1

4 ).

That is
W (z,z′) =W (z)W (z′) (4.37)

where
W (z) =

∫

SL(2,C)

dg ∏
l=1,4

∑
jl

d jl e
−t jl( jl+1)Pj(Hl(z),g). (4.38)

Problem: Show this.

The factorization property was expected in this limit, for the reason given in the last footnote.
We are interested in computing this for large spaces, namely when the imaginary part of z is

large. Consider the form (4.34) of Hl and D( j)(Hl) in this limit. Orienting the z-axis along nl , we
have

D( j)(Hl) = D( j)(ezτ3)m
n = δ

m
neimz. (4.39)

When the imaginary part of z is large, only the highest magnetic quantum number m = j survives,
therefore in this limit

D( j)(Hl) = δ
m

jδ
j
nei jz = ei jzPnl (4.40)

where Pnl is the projector on the highest magnetic number eigenstate in the direction nl . Observe
now that the sum over j is (a discretization of) a gaussian integral in jl , peaked on a large value
j∗ ∼ t p. One can show that the rest of the expression contributes only polynomially, giving finally
[102]

W (z)∼ ze−
z2
2t . (4.41)

Finally, restoring h̄ 6= 1 for clarity, the transition amplitude in this approximation is

W (z,z′)∼ zz′e−
z2+z′2

2th̄ . (4.42)

This amplitude reproduces the correct Friedmann dynamics in the sense that it satisfies a quantum
constraint equation which reduces to the (appropriate limit of the) Friedmann hamiltonian in the
classical limit [102]. Once appropriately normalized by the norm of the boundary coherent state, it
can be shown to be peaked on the classical solutions of the theory Friedmann dynamics in the large
scale limit we are considering.

The result can be improved by adding a cosmological constant to the theory [103]. To do this,
we use the spin-intertwiner basis version of the amplitude, and modify it as follows

ZC = ∑
j f ,ve

∏
f
(2 j+1)∏

e
eiλve ∏

v
Av( j f ,ve). (4.43)
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This resulting amplitude turns out to be

W (z) = ∑
j
(2 j+1)

No

j3 e−2th̄ j( j+1)−iz j−iλvo j
3
2 (4.44)

There are many ways of analyzing this amplitude. The simplest is to plot its modulus square: see
figure 10. This shows a linear relation between a and ȧ, which is readily integrated giving

a(t) = e
√

Λ

3 t (4.45)

where Λ is a constant fixed by the parameter λ in (4.43). See [103] for more details. Equation
(4.45) is the DeSitter solution of the Einstein equations.28

Figure 10: Numerical analysis of the transition amplitude. The only free parameter is λvo, here is set equal
to .3. The computation has been done truncating the sum over j up to a maximum value jmax = 200. This
choice is compatible to maximal scale factor plotted.

4.6.2 n-point functions

The two point function of general relativity over a flat spacetime has been computed in the
Euclidean [106], as well as in the Lorentzian [72] theory, following the earlier attempts in [107, 74,
108, 109, 110], and has been shown to converge to the free graviton propagator of quantum gravity
in the large distance limit.

Higher n-point functions have been computed to the same order in [111] (so far only in the
Euclidean theory), and they match the corresponding Regge expressions.

The calculation is to first order in the vertex expansion, on the complete graph with five nodes
Γ5, and to first order in the large-distance expansion. The boundary state ψL is a coherent state
determined on the boundary of a 4-simplex. That is, the boundary graph is

Γ5 =

q
qq q

q �
�
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Q
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��B
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c
cc

(4.46)

.

28For large scale factors, which is the regime in which we are, this also holds also for the spatially compact coordi-
natization.
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and represents a triangulation of a (topological) three sphere immersed in spacetime. The spinfoam
is (vertex and edges drawn)
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and represents a finite region of spacetime, bounded by Γ5.
For the two-point function, the quantity computed is

W abcd
mn = 〈W |~Lna ·~Lnb~Lmc ·~Lmd |ψL〉 (4.48)

−〈W |~Lna ·~Lnb|ψL〉〈W~Lmc ·~L j
md |ψL〉.

where m,n,a,b...= 1, ...,5 label the nodes of Γ5.
The boundary state ψL is a coherent state peaked on the intrinsic and extrinsic geometry of a

four-simplex immersed in flat space. L is the radius of the four simplex, chosen so that the centers
of the two boundary tetrahedra n and m are at a distance L. This determines the background space
over which the two-point function is computed.

The operators ~Lna ·~Lnb are Penrose metric operators, on the node n, relative to links (n,a)
and (n,b). They give angles between the faces of the boundary tetrahedra, and areas of these
tetraehdra. These are directly given by components of the metric tensor (integrated over the faces
of the tetrahedra).

The resulting expression can be compared with the corresponding (connected) quantity

W abcd(xm,xn) = 〈0|gab(xn)gcd(xm)|0〉c (4.49)

in conventional QFT, where gab(x) is the gravitational field operator. Intuitively, consider flat
spacetime with the two points xn and xm. Choose a four-simplex in this flat spacetime, such that
the two points xn and xm sit at the center of two of the boundary tetrahedra. Then take the intrinsic
and extrinsic geometry of the boundary of this four-simplex to be the classical data determining
the semiclassical state ψL. This is how the background geometry is fed into the calculation, in the
background independent dynamics.

I do not report the calculation here, since is is quite intricate and involves numerous subtleties
(gauge fixing, choice of the boundary state, correct identification between smeared quantities, pre-
cise definition of the limit...). The result is that the n-point functions computed from the LQG
converge to the expected first order (free) one in the large j limit. For the propagator, for example,
(4.48) scales correctly with the square of the distance and has the full correct tensorial structure of
the propagator (in an appropriate gauge). For a complete discussion, see the original references,
and in particular [107, 74, 106, 72]. Progress towards next order is in [71, 70, 73].

5. Derivations

I have presented the theory without deriving it from classical general relativity. There are a
number of distinct derivations that converge to the theory. In this last section, I sketch some basic
ideas in these derivations. A word of caution is however needed.
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Quantum-gravity research has often focused on setting up and following “quantization paths"
from classical general relativity to a quantum theory. These are very useful to provide heuristic
indications for constructing the quantum theory, but they are neither sufficient nor necessary for
taking us to quantum gravity. If there was a straightforward quantization route, the quantum the-
ory of gravity would have been found long ago. Any generalization requires a certain amount of
guesswork. The “quantization paths" sketched below must be seen as nothing more than heuristics,
which have given suggestions useful for construction of the theory, and shed light on aspects of the
definitions.

The theory itself should not be evaluated on the basis of whether or not quantization procedures
have been “properly followed" in setting it up. It must be judged on the basis of two criteria. The
first is whether it provides a coherent scheme consistent with what we know about Nature, namely
with quantum mechanics and, in an appropriate limit, with classical general relativity. The second
is to predict new physics that agrees with future empirical observations. This is all we demand of a
quantum theory of gravity.

Since for the moment we do not have so many useful empirical observations, it might sound
that the considerations above give us far to much freedom. How then to choose between different
quantum gravity theories, or different ways of constructing the theory? This question is asked often.
I think it is a misleading question, for the following reason. At present, we do not have several
consistent, complete and predictive theories of quantum gravity. In fact, we are near to have none
at all. Most of the quantum gravity approaches lead to very incomplete theories where predictions
are impossible. Therefore the scientifically sound problem, today, is whether any complete and
consistent quantum theory of gravity can be set up at all. If we can solve this problem, it is already
a great success, after decades of search. The issue of checking whether this is the right theory,
namely the theory that agrees with experiments, comes after. And if history is any guide, solving a
problem of this kind has almost always immediately led to the right solution: Maxwell found one of
the possible ways of combining electricity and magnetism, and it was the right one, Einstein found
one of the possible ways of writing a relativistic field theory of gravity and it was the right one,
and so on. The scientifically sound problem today, therefore, is whether a complete, consistent,
predictive theory of quantum gravity exists. With this in mind, let us see what is the formal relation
between classical general relativity and the quantum theory constructed above. Accordingly, this
section is mostly sketchy, and relies on pointers to existing literature.

5.1 Dynamics

General relativity can be presented as the field theory for the field gµν(x) defined by the clas-
sical equations of motion that follow for instance from the action

S[g] =
∫

dx
√

g (R−2Λ). (5.1)

In this section I neglect the cosmological constant Λ. The metric field gµν(x) cannot be the funda-
mental field, because it does not allow fermion coupling. A better presentation of the gravitational
field, compatible with the physical existence of fermions, is the tetrad formulation, where the grav-
itational field is represented by the field e(x) = eµ(x)dxµ , where eµ(x) = (eI

µ(x), I = 0,1,2,3) is a
vector in Minkowski space. The relation with the metric is well known: gµν = ηIJeI

µeJ
ν . It con-

venient to treat the theory in the so called first-order formalism, in which the connection is treated
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as an independent variable. Therefore we introduce a (a priori) independent SL(2,C) connection
field ω(x) = ωµ(x)dxµ , where ωµ(x) = (ω IJ

µ (x)) is an antisymmetric Minkowski tensor, namely
an element in the adjoint representation of SL(2,C). Another element in the adjoint representation
is the Plebanski two form

Σ≡ e∧ e, (5.2)

which is important in what follows. Rewriting (5.1) in terms of these quantities gives

S[e,ω] =
∫
(e∧ e)∗∧F [ω] (5.3)

where F is the curvature of ω , the star indicates the Hodge dual in the Minkowski indices, that is
(e∧ e)∗IJ ≡ 1

2 εIJKL eK ∧ eL, and a trace in the adjoint representation is understood (that is ΣF ≡
ΣIJF IJ)

Problem: Derive the action (5.3) from (5.1).

Now, recall that in QCD we add to the classical action
∫

F∗ ∧F a parity violating θ -term
θ
∫

F ∧F that does not affect the equations of motion, but which has an effect in the quantum
theory. The same can be done in general relativity, giving the Holst action

S[e,ω] =
∫
[(e∧ e)∗+

1
γ
(e∧ e)]∧F [ω]. (5.4)

This action is equivalent to (5.1) in the sense that all solutions of the Einstein equations of motion
are also solutions of this action. Therefore this action is just as empirically valid as standard general
relativity.

Problem: Write the second term in (5.4) in metric variables (assuming the connection is determined by the metric): What
does it give? The result can be guessed from its parity character.

We are interested in the quantum states of this theory. Quantum states live at fixed time, or, in
a more covariant language, on a 3d surface bounding a spacetime region. Let us therefore consider
a region of spacetime with a boundary Σ, and let’s study the canonical formalism associated to this
boundary. The momentum conjugate to ω|Σ, namely to the restriction of ω to Σ, is immediately
read out of the action:

π =

(
(e∧ e)∗+

1
γ
(e∧ e)

)∣∣∣∣
Σ

. (5.5)

π lives in the adjoint representation of SL(2,C). In the quantization of any theory with an internal
gauge, the momentum conjugate to the connection is the generator of the local gauge transforma-
tions, thus we identify π with the SL(2,C) generator in the quantum theory.

It is convenient to partially gauge fix the internal SL(2,C) symmetry. Choose (continuously) a
scalar field n = (nI) with (timelike) values in Minkowski space at every point of the boundary, and
gauge fix e by requiring that ne|Σ = nIeI

i dxi = 0, where xi are coordinates on the boundary. Define
its electric and magnetic components with respect to the gauge defined by n, that is

~K := nπ, ~L :=−nπ
∗. (5.6)
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where the arrow reminds us that these are in fact 3d quantities like the electric and magnetic field.
In the time gauge, using ne = 0, this gives immediately

~K = n(e∧ e)∗|Σ, ~L =−1
γ

n(e∧ e)∗|Σ, (5.7)

that is
~K + γ~L = 0, (5.8)

which is called the “linear simplicity constraint". ~L, formed by the space-space components of π ,
generates rotations, while ~K, formed by the time-space components of π , generates boosts. There-
fore the states of the quantum theory will have to satisfy the constraint equation (5.8). Compare
this equation with equation (3.10), and recall that the space Hγ is the subspace of the space of the
SL(2,C) representations where this equation holds. It is clear that the restriction of the SL(2,C)
representations defined by Hγ is precisely an implementation of the general relativity constraint
(5.8).

Now, consider a theory defined by the action

S[B,ω] =
∫

B∧F [ω]. (5.9)

where B is an arbitrary two-form with values in the adjoint representation. This is the same theory
as general relativity but without the condition that B has the form B = (e∧ e)∗+ 1

γ
(e∧ e) for some

e, or, equivalently, without the condition that in the time gauge simplicity holds. This theory, which
is called BF theory, is well understood both in the classical and quantum domains. The equations
of motion give F = 0, therefore the connection is flat. Therefore the dynamics of general relativity
can be thought as the combination of two ingredients: an SL(2,C) theory of a flat connection, but
with the additional constraint (5.8). Compare now these observations with the definition of the
vertex amplitude (3.31) that defines the LQG dynamics. The vertex is obtained by mapping SU(2)
spin networks into SL(2,C) spin networks with the map Yγ , and then evaluating these networks at
the identity. The first step maps SU(2) spin networks precisely in the subspace of SL(2,C) spin
networks where the simplicity constraint holds. The evaluation at the identity is like the request
that the connection is flat. In fact, it can be easily shown that if we replace YΓ with the identity, we
obtain one of the well known quantizations of BF theory. This is discussed in many review papers
and I will not insist on this here. See for instance [112] and [82].

The considerations above do not represent a derivation of the LQG dynamics from classical
general relativity. But they show that the basic ingredients on which the LQG dynamics is defined
are precisely the basic ingredients of the general relativity dynamics, when expressed in the tetrad-
connection form.

5.2 Kinematics

The consideration above illustrate the formal relation between the dynamics of LQG and that
of classical general relativity. Let me now step back and discuss the logic behind the kinematics
of LQG. Consider again the three-dimensional spacelike slice Σ of spacetime (that is, “space") and
consider the restriction of ω to this slice. Fix the time gauge. The “Ashtekar-Barbero" connection
is the field

A≡ n(ω∗+ γω)|Σ. (5.10)
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It transforms as an SU(2) connection under the transformations generated by~L and it is a simple
calculation to show that ~L and A are conjugate variables. Given a two-dimensional surface l in
space and a one-dimensional line σ , let

~Ll =
∫

l
~L (5.11)

be the flux of~L across the surface and

Uσ = P e
∫

σ
A (5.12)

the parallel transport operator for A along a curve σ , which is an element of SU(2). The two
quantities~Ll and Uσ are the basis of the canonical loop quantization of general relativity [113, 4,
82]. Their Poisson algebra can be represented by operators acting on a space S of functionals
ψ[A] of the connection. The space S is formed by (limits of sums of products of) functionals that
depend on the value of A on graphs.

Problem: (Very important) Compute the Poisson bracket {~Ll ,Uσ}. Assume for simplicity that σ crosses l at a single
point, which splits σ into two lines σ1 and σ1. Show that {~Ll ,Uσ} is not distributional (why?) and is proportional
to Uσ1~τUσ2 . Hint: the Poisson brackets have a 3d delta function, the flux a 2d integral and the holonomy a 1d inte-
gral. Write everything explicitly in coordinates and observe that the final result is independent from coordinates and
parametrization.

The key gauge invariance is 3d coordinate transformations, which plays three major roles.
First, it is the main hypothesis for a class of theorems stating that the resulting representation is
essentially unique [114, 115]. Second, it “washes away" the location of the graph Γ in Σ, so that
all the Hilbert subspaces associated to distinct but topologically equivalent graphs in Σ end up
identified [24, 25]. Depending on the particular class of coordinate transformations one allows in
the classical theory, one ends up with the different versions of the Hilbert space mentioned above.
Third, this gauge invariance resolves the difficulties that have plagued the previous attempts to use
a basis of loop states in continuous gauge theories.

The other gauge invariance of the canonical theory is formed by the local SU(2) transforma-
tions, which gives rise to (2.16).

The natural definition of the dynamics in the hamiltonian framework is in terms of a hamilto-
nian constraint operator [4]. A spinfoam expansion for the transition amplitudes can in principle
be derived from the canonical formalism [26], but for the moment we do not know how to derive
explicitly the amplitude given above from a well defined Hamiltonian constraint.

The purely canonical formulation of the dynamics defined by the Hamiltonian operator is now being developed by
an active research program [116], which mostly uses the idea of gauge-fixing diffeormorphisms with matter fields.

5.3 Covariant lattice quantization

A different possibility to build the quantum theory is to discretize general relativity on a 4d
lattice with a boundary, and study the resulting Hilbert space of the lattice theory. This is close in
spirit to lattice gauge theory. The difference is diffeomorphism invariance: in general relativity the
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lattice is a “coordinate" lattice, and coordinates are gauges. Thus for instance there is no analog
of the QCD lattice spacing a. More precisely, the physical dimensions (lengths, areas, volumes) of
the cells of the lattice are not fixed, as in lattice gauge theory, but are determined by the discretized
field variables themselves.

The (double covering of the) local gauge group of the covariant theory is SL(2,C) and the
boundary space that one obtains on the boundary of the lattice theory is

H
SL(2,C)

Γ
= L2[SL(2,C)L/SL(2,C)N ]. (5.13)

where Γ is the two-skeleton of the boundary of the lattice. The states in this Hilbert space ψ(gl),gl∈
SL(2,C), can be seen as wave functions of the holonomies Hl =P exp

∫
l ω of the spin connection

ω , along the links l. The corresponding generators J of the Lorentz group must therefore represent
the conjugate momentum of ω .

Notice that SL(2,C) has a natural complex structure and we can define the complex variables
Π = K + iL and Π = K− iL. Then (5.8) can be interpreted as a reality condition. A technique for
implementing reality conditions in the quantum theory is to choose a scalar product appropriately.
This is because reality conditions depend on complex conjugation, and this is realized by the adjoint
operation in the quantum theory. But the adjoint operation does not depend on the linear structure:
it depends on the scalar product. Therefore we can implement the reality conditions by choosing
the scalar product appropriately (see e.g. [117]). Viceversa, we can view the quantum mechanical
scalar product as determined by the reality conditions.

For instance, in the usual Schrödinger representation the condition that x and p be real trans-
lates into the requirement that the linear operators x and p =−i d

dx (which form a linear representa-
tion of the poisson algebra of the observables x and p) be self adjoint. The L2 scalar product is the
unique one making them so, and thus satisfying the reality conditions.

If we apply this idea here, we have to find a scalar product on a space of lineal functionals on
SL(2,C) , such that (5.8) holds. The solution is clear: this is the scalar product implicitly defined
by the map (3.9). This reduces the space (5.13) to one isomorphic to (2.18).

5.4 Polyhedral quantum geometry

The idea of polyhedral quantum geometry is to describe “chunks" of quantum space by quan-
tizing the space S̃ of the “shapes" of the geometry of solids figures (tetrahedra, or more general
polyhedra) [118, 119, 67, 58]. This space can be given a rather natural symplectic structure as
follows. Take a flat tetrahedron, for simplicity. Its shape can be coordinatized by the four normals
~Ll, l = 1,2,3,4 to its faces, normalized so that |~Ll| = al is the area of the face l. A natural SO(3)
invariant symplectic structure on S̃ is ω = ∑l εi jk Li

l dL j
l ∧ dLk

l , or, equivalently, by the Poisson
brackets

{Li
l,L

j
l′}= δll′ ε

i j
k Lk. (5.14)

A quantum representation of this Poisson algebra is precisely defined by the generators of SU(2)
on the space Hn given in (2.28) (for a 4-valent node n). The operator corresponding to the area
al = |~Ll| is the Casimir of the representation jl , therefore the space “quantizes" the space of the
shapes of the tetrahedron with areas jl( jl +1). Furthermore, the normals of a tetrahedron satisfy

~C := ∑l
~Ll = 0. (5.15)
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The Hamiltonian flow of ~C, generates the rotations of the tetrahedron in R3. By imposing equation
(5.15) and factoring out the orbits of this flow, the space S̃ reduces to a space S which is still
symplectic. In the same manner, imposing the operator equation (5.15) strongly on Hn gives the
space Kn given in (2.29).

The construction generalizes to polyhedra with more than 4 faces. Then the shape of an ensem-
ble of such polyhedra, with the same area and opposing normals on the shared faces29, is quantized
precisely by the Hilbert space H defined above.

What is the relation with gravity? The central physical idea of general relativity is of course
the identification of gravitational field and metric geometry. Consider a polyhedron given on a
(say, piecewise linear) manifold. A metric geometry is assigned by giving the value of a metric, or
a triad field ei = ei

adxa, namely the gravitational field. Consider the quantity

Li
l = εi jk

∫

l
e j ∧ ek. (5.16)

Observe that on the one hand this is precisely Ll defined in (5.11), namely the flux of the densitized
inverse triad, or the flux of the Ashtekar’s Electric field E ia across the face l of the polyhedron:

E i
l =

∫

l
naEai , (5.17)

where na is the normal to the face; on the other hand, in locally flat coordinates it is the normalized
normal~nl to the face l, multiplied by the area:

E i
l =

∫

l
naEai =

∫

l
ni = ni

lal = Li
l. (5.18)

Therefore the quantized normals~Ll of simplicial quantum geometry can be interpreted as the quan-
tum operator giving the flux of the Ashtekar electric field, and we recover again the full kinematics
of the previous section.

The spinfoam formalism is natural from this point of view, and the first spinfoam amplitude,
called the Barrett-Crane amplitude was first formalized in this context [15]. The Barrett-Crane
model was then improved to give the amplitude defined in these lectures.

6. Conclusion

These lectures are far from covering the full spectrum of the research in Loop Quantum Grav-
ity. I have focused on the covariant formulation of the dynamics, at the expenses of the ongo-
ing research in the canonical language. A formulation I haven’t covered is group field theory
[120, 34], which is the language in terms of which current research on the scaling of the theory
is formulated [32, 33, 121]. I haven’t covered the applications of the theory to black hole physics
[122, 123, 124, 125], and to hamiltonian loop quantum cosmology [126, 127], which are by far
the most interesting applications of LQG. In particular, loop quantum cosmology is the most likely
window for observations. Also, I have not covered several recent development, such as the man-
ifest Lorentz invariant formulation of the theory [128], the coupling to fermions and Yang-Mills

29The area and the normals match, but not the rest of the geometry of the face, in general. Thus, we have “twisted
geometries", in the sense of Freidel and Speziale.

46



Loop gravity Carlo Rovelli

fields [14, 129], and to a cosmological constant [11, 130], using a quantum group. For a wide angle
review, complementary to these lectures, on various aspects of the theory, including historical, and
a more comprehensive bibliography and tentative overall evaluation, see [5].

In conclusion, the theory looks simple and beautiful to me, both in its kinematical and its
dynamical parts. Some preliminary physical calculations have been performed and the results are
encouraging. The theory is moving ahead fast. But it is far from being complete, and we do not yet
know if it really works, and there is still very much to do.

My greatest wish is that one of the students studying these lectures will be able to solve the
last problem:

Problem: Show that theory is wrong, correct it. Or: show that the theory is right, find observable consequences.

Verona, July 22nd, 2011

—–

I thank for corrections and suggestions: Jacek Puchta and Milka Kubalova. A warm thank in
particular to Leonard Cottrell.

A. Open problems

The theory is far from being complete. Below is a list of some of the open problems that
require further investigation.

A great pleasure for me in updating these notes has been to realize that several of the problems
posed in the first version of these notes are since been solved. This witnesses to the state of rapid
growth in which the theory is. For completeness, I leave the old problems here, indicating that the
progress made, in square parentheses.

1. Compute the propagator (4.48) in the Lorentzian theory, extending the euclidean result of
[106]. [Done in [72].]

2. Compute the three point function and compare it with the vertex amplitude of conventional
perturbative quantum gravity on Minkowski space. [Done in [111].]

3. Compute the next vertex order of the two point function, for N = 2.

4. Compute the next graph order of the two point function, for Γ > Γ5.

5. Understand the normalization factors in these terms, and their relative weight. Find out under
which conditions the expansion is viable.

6. Study the radiative corrections in (3.28) and their possible (infrared) divergences, following
the preliminary investigations in [100]. The potential divergences are associated to “bubbles"
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(nontrivial elements of the second homotopy class) in the two-complex. Classify them and
study how do deal with these. [Progress in the Group Field Theory version of the formalism
[33, 32]. Because of Ditt-invariance [31], this problem might be related to the analysis of the
divergences of BF theory, on which there has been substantial progress in[131, 132, 133].]

7. Use the analysis of the these radiative corrections to study the scaling of the theory.

8. In particular, how does G scale?

9. Study the quantum corrections to the tree-level n-point functions of classical general relativ-
ity. Can any of these be connected to potentially observable phenomena?

10. Is there any reason for a breaking or a deformation of local Lorentz invariance, that could
lead to observable phenomena such as γ ray bursts energy-dependent time of arrival delays,
in this theory? [Observation is proceeding fast on this issue. See [134, 135, 1]].

11. Compute the cosmological transition amplitude in the Lorentzian theory, extending the eu-
clidean result of [102]. [Done in [99].] Compare with canonical Loop Quantum Cosmology
[127, 136].

12. The possibility of introducing a spinfoam-like expansion starting from Loop Quantum Cos-
mology has been considered by Ashtekar, Campiglia and Henderson [137, 138, 139, 140,
141]. Can the convergence between the two approaches be completed?

13. Find a simple group field theory [142] whose expansion gives (3.28). [Much progress in
[32, 33].]

14. Find the relation between this formalism and the way dynamics can be treated in the canoni-
cal theory. Formally, if H is the Hamiltonian constraint, we expect something like the main
equation

HW = 0 (A.1)

or WP = 0 where the operator P is given by 〈W |ψ ⊗ φ〉 = 〈ψ|P|φ〉, since P is formally a
projector on the solutions of the Wheeler de Witt equation

Hψ = 0. (A.2)

Can we construct the Hamiltonian operator in canonical LQG such that this is realized?

15. Is the node expansion related to the amount of boundary data available? How?

16. Where is the cosmological constant in the theory? It is tempting to simply replace (3.31)
with a corresponding quantum group expression

〈Wv|ψ〉= Evq( f ψ). (A.3)

where Evq is the quantum evaluation in SL(2,C)q. Does this give a viable theory? Does this
give a finite theory? [Solved in [130, 11, 12].]
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17. How to couple fermions and YM fields to this formulation? The kinematics described above
generalizes very easily to include fermions (at the nodes) and Yang Mills fields (on the links).
Can we use the simple group theoretical argument that has selected the gravitational vertex
also for coupling these matter fields? [A solution of this problem has appeared: [14, 129].]

18. Is the scenario sketched in Section 4.4 truly realized in the theory? Do the amplitudes con-
verge fast with the refinement, in suitable regime? Do radiative corrections interfere with
this convergence?

19. Are there interesting variants to the amplitude? Alternative choices for the face amplitude
have been considered in the literature. In the Euclidean case, where SL(2,C) is replaced
by SO(4), there is a natural alternative which is the dimension of the SO(4) irreducible into
which the representation j is mapped by Yγ . This choice appears to be incompatible with
the natural composition properties of the spin foam amplitude [101]. A simple modification
of the theory is to multiply the vertex by a constant λ . This comes naturally if one derives
the transition amplitudes from a group field theory [142]: then λ is the coupling constant in
front of the group-field-theory interaction term. The physical interpretation of the constant λ

is debated [142, 138]. Modifications of the amplitudes have recently been explored in [143].

B. Alternative expressions for the amplitude

I list here various form of the transition amplitudes that have been used in the literature and
can be useful.

B.1 Single equation

The definition (3.28,3.29,3.30) of the amplitude can be written compactly in a single equation
in the form

ZC (hl) =
∫

(SL2C)2(E−L)−V
dg′ve

∫

(SU2)V −L
dhef ∑

jf

N−1
{ j f }∏

f
d jf

χ
γ jf , jf

(
∏

e∈∂ f
gεl f

ef

)
∏

e∈∂ f
χ

jf(hef ) (B.1)

Here εe f =±1 if the edge e appears as e or as e−1 in the sequence and

V = ∑
f

n f . (B.2)

See [76] for details and the next subsection for more on the definition of each term.

B.2 Feynman rules

A more detailed description of this expression is given by the following Feynman rules. ZC (hl)

is defined as the integral obtained associating:

1. Two group integrations to each internal edge (or one to each adjacent couple {internal edge,
vertex})

g′

g

�
�
e 7−→

∫

SL2C
dgese

∫

SL2C
dgete (B.3)
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2. A group integration to each couple of adjacent {face, internal edge}

@

�
�

e

f hef 7−→
∫

SU2
dhef χ

j f (hef ) (B.4)

3. A sum to each face f

� @

�
�
hef

f

g′

g

7−→ ∑
jf

d jf χ
γ jf , jf

(
∏

e∈∂ f
gεl f

ef

)
. (B.5)

where ge f := gesehef g−1
ete for internal edges, and gef = hl ∈ SU2 for boundary edges. γ is a

fixed real parameter, the Barbero-Immirzi parameter.

4. At each vertex, one of the integrals
∫

SL2C dgev in (B.3) (which is redundant) is dropped. (This
is the meaning of the prime on dgev)

5. For each coloring j f , divide the local amplitude by the combinatorial factor N j j . This factor
has be taken to be unity in the text. If we choose it to be the number of automorphisms of C

that preserves j f , we have an interesting consequence:

The limit (3.34) can be equivalently [77] expressed as an infinite sum over transitions

W (hl) = ∑
C

Z∗C (hl). (B.6)

where Z∗C (hl) is defined by the same expression as ZC (hl), but with the sum over spins going
from 1

2 to ∞ rather than from 0 to ∞. That is, dropping trivial representations. That is,
the full theory can be equivalently recovered by taking the “infinite refinement limit" or by
“summing" over two-complexes.

B.3 Using Y explicitly

The kernel (3.16) can be written in the form

K(h,g)=∑
j
(2 j+1)Tr

[
D( j)(h)Y †

γ D(γ j, j)(g)Yγ

]
. (B.7)

That it, using the explicit form of the Yγ map,

K(h,g)=∑
jmn

(2 j+1)D( j)(h)m
nD(γ j, j)(g) jn

jm. (B.8)

We use for this the simplified notation

K(h,g)=∑
j

d j Tr j
[
Y †

γ gYγh
]
. (B.9)
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B.4 Spin-intertwiner basis

In the spin intertwiner basis, the amplitude reads

Z( jl,vn) = ∑
j f ,ve

∏
f

d j f ∏
v

Av( j f ,ve) (B.10)

which is the well known form of the spinfoam state sums. This form of the amplitude can be
obtained from (3.28) as follows. First, define the vertex amplitude in the spin network basis by

Av(hv f )≡ ∑
jv f ,vve

ψ jv f ,vve(hv f )Av( jv f ,vve) (B.11)

where ψ jl ,vn(hl) = 〈hl| jl,vn〉 is the standard kernel of the change of basis from holonomies to group
elements, namely simply the contraction of the intertwiners according to the pattern defined by the
boundary graph of v. Using this and expanding the delta function in (3.28), gives (I consider the
no-boundary case for simplicity)

Z =
∫

dhv f ∏
f

∑
j f

d j f tr[D
j(hv1 f )...D j(hvn f )]

∏
v

∑
jv f ,vve

ψ jv f ,vve(hv f )Av( jv f ,vve). (B.12)

The integrals can be now performing explictely using (2.3). The result is
∫

dhv f ∏
f

d j f tr[D
j(hv1 f )...D j(hv1 f )] ∏

v
ψ jv f ,vve(hv f )

=⊗ jv f δ jv f , j f ⊗e 〈vese |vete〉. (B.13)

Using this, we have immediately (B.10).

B.5 Coherent states form

The sum over intertwiners can be traded for an integral over coherent states, since these form
a basis in intertwiner space. Thus we can write

Z = ∑
j f

∫
d~ne f ∏

f
d j f ∏

v
Av( j f ,~ne f ) (B.14)

Using (4.17), we get

Z = ∑
j f

∫
dg̃ve

∫
dne f ∏

f
d j f ∏

v
〈−~ne f |Y †geg−1

e′ Y |~ne′ f 〉 j (B.15)

where e and e′ are the two edges bounding f and v. This can be written in the form of a path
integral

Z = ∑
j f

∫
dg̃ve

∫
dne f ∏

f
d j f eS (B.16)

by defining the action
S = ∑

f v
ln〈−~ne f |Y †geg−1

e′ Y |~ne′ f 〉 j (B.17)
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This is the form of the amplitude used to study its asymptotic expansion.
In the euclidean theory, Y maps the SU(2) representations j of into the SO(4) representa-

tion ( j+, j−). The matrix elements of Y are the standard Clebsch-Gordan coefficients. Since the
coherent states factorize under the Clebsch-Gordan decomposition, we obtain S = S++S− with

S± = ∑
v f

2 j±f ln〈−~ne f |(g±a )−1g±b |~ne′ f 〉 1
2
. (B.18)

The euclidean vertex amplitude in the spin network basis reads

A( je,vn) = ∑
v+n v−n

15 j
(

(1+γ) jl
2 ;v+n

)
15 j
( |1−γ| jl

2 ;v−n
)

⊗

a
f in
i+n i−n

( jl) (B.19)

where the 15 j are the standard SU(2) Wigner symbols, and the “fusion coefficients" are

f v
v+v− := vm1...mn v+q+1 ...q+n

v−q−1 ...q−n
⊗

i

cq+i q−i
mi . (B.20)

cq+i q−i
mi . being the Clebsch-Gordan coefficients.

The vertex amplitude was first constructed in this language.
In the lorentzian theory:

A( jl, in) = ∑
kn

∫
d pn(k2

n + p2
n)

(
⊗

a
f in
kn pn

( jl)

)

15 jSL(2,C) (( jl, jlγ);(kn, pn)) (B.21)

where we are now using the 15j of SL(2,C) and

f v
kp := vm1...m4 C̄kp

( j1,m1)...( j4,m4)
, (B.22)

where j1... jn are the representations meeting at the node.

B.6 Perez representation

Finally, Alejandro Perez is writing an introductory review to the spinfoam formalism [144].
Perez introduces a nice graphical formalism for the theory. For completeness I write here the
definition of the partition function for the euclidean theory

ZC = ∑
j f ve

∏
f
(2 j f +1) ∏

v

= =

=
∑

ι

ι ῑ (136)

which follows basically from the invariance of the Haar measure (in the last line we have used (71)).
More presicely, the integration of the subgroup SU(2) ∈ Spin(4), represented by the green box on
the right, can be absorbed by suitable redefinition of the integration on the right and left copies
of SU(2), represented by the red and blue boxes respectively. With this we can already write the
spin foam representation of the EPRL model, namely

ZE
eprl(∆) =

∑

jf

∑

ιe

∏

f∈∆!

d|1−γ| j
2
d(1+γ) j

2

∏

v∈∆!

ι1

ι2

ι3

ι4

ι5

, (137)

where the vertex amplitude (graphically represented) depends on the 10 spins j associated to the
face-wires and the 5 intertwiners associated to the five edges (tetrahedra). As in previous equations
we have left the spin labels of wires implicit for notational simplicity. We can write the previous
spin foam amplitude in another form by integrating out all the projectors (boxes) explicitly. Using,
(71) we get

37

(B.23)
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and for the lorentzian theory

ZC = ∑
j f ve

∏
f
(2 j f +1) ∏

v

EPRL model becomes a state-sum model as its Riemannian relative. Using the following graphical
notation

Dp,k
jmj′m′(g) =

p

k
j′,m′j,m (166)

the amplitude is

ZL
eprl(∆) =

∑

jf

∏

f∈∆!

(1 + γ2)j2
f ,

where the boxes now represent SL(2, C) integrations with the invariant measure. The previous
amplitude is equivalent to the its spin foam representation

ZL
eprl(∆) =

∑

jf

∑

ιe

∏

f∈∆!

(1 + γ2)j2
f

∏

v∈∆!

ι1

ι2

ι3

ι4

ι5

,

The vertex amplitude is well defined [63].

9.1 The coherent state representation

It is immediate to obtain the coherent states representation of the Lorentzian models. As in the
Riemannian case, one simply inserts resolution of the identities (??) on the intemediate SU(2)
(green) wires in (167) from where it results
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in this notation. I refer to Perez review for the definition of the notation and the relation with the
formalism used here.
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