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1. Foreword

A common point of noncommutative gravity with the loop quantum gravity is the belief that
by representing coordinates and gravitational field by operators it is possible to reduce or remove
singularities of the classical solutions. Whether such representations can be obtained only in the
process of quantization is perhaps unclear: in noncommutative geometry we usually assume that
noncommutativity of coordinates is present already at the classical level.

There is a variety of approaches to noncommutative gravity which differ in initial physical
premises, but remarkably, they often give identical or very similar formulae. One of the current
ideas discussed at the School is that gravity is an ‘emergent phenomenon’, [1]. Starting from
the matter which consists of Yang-Mills fields in a matrix model, one recognizes that a part of
gauge symmetry describes in fact the gravitational degrees of freedom. As the basic objects in
this scheme are matrices, the description of gravity is noncommutative. In the ‘twisted gravity’
approach [2] the basic idea is to deform the usual group of diffeomorphisms by a twist into a Hopf
algebra, thus extending the action of symmetries to noncommutative spaces. The metric and the
connection in this framework are defined by an appropriate generalization of the Einstein-Hilbert
action. In the proposal which we study, noncommutative gravity is identified with noncommutative
geometry through the ‘noncommutative frame formalism’, [3]. Thus from the point of view of
physics gravity is treated as background and nondynamical (at this step); objects which characterize
noncommutative space like the metric or the curvature are inherent and purely geometric. We will
try here to explain, in short strokes and through simple examples, how is this idea realized.

2. Introduction

One aspect of noncommutative geometry is discretization and fragmentation of spacetime.
They are both obtained as a result of representation by operators: the eigenvalues of coordinates
give specific discretization and the uncertainty relations arising from [xµ ,xν ] = ik̄Jµν give frag-
mentation into Planck cells. In particular, an important class of noncommutative spaces is provided
by finite matrix algebras which have very interesting discrete geometries. Our aim is to show that
on every algebraic structure one can define differential geometry in consistent and natural way, thus
giving it a notion of smoothness necessary to introduce physics.

2.1 Basics of differential geometry in the coordinate basis

We start with a brief list of concepts in differential geometry which are of importance for
gravity [4, 5]. The basic notion is that of a manifold or spacetime M . It is a topological space
which is homeomorphic to Rn locally, but may be different from Rn globally. This means that on
M we can introduce local coordinates xµ , µ = 1, . . . ,n ; the dimension of space is n. Significance
of manifolds in part lays in the fact that one can use de Rham differential calculus developed on
Rn; its main elements are as follows.

The basic algebraic structure on M is given by functions of coordinates f (xµ). The algebra
of functions can even describe geometric notions as points: a point aµ ∈ M is identified with the
δ -function δ (xµ − aµ). A curve c(t) is a mapping c : (a,b) → M , that is a set of one-parameter
functions xµ = f µ(t), t ∈ (a,b).
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Vectors X are defined as tangent vectors to curves. A tangent vector of a function f along a
curve c(t) is d f (c(t))/dt, so a vector field is a map X : functions → functions. The set of all vector
fields is a linear space in which as basis we can choose partial derivatives ∂µ . Expanding in this
basis we have X = X µ∂µ . Vector fields obey the Leibniz rule,

X( f h) = (X f )h+ f (Xh). (2.1)

Linear space dual to the tangent space is the cotangent space: it consists of differential 1-forms
χ,ω . . . which map χ : vectors→ functions. The basis of 1-forms dual to ∂µ is dxµ : dxµ(∂ν) = δ

µ

ν .
Dimensions of both tangent and cotangent spaces are n, equal to the dimension of M . By making
direct products of tangent and cotangent spaces and imposing linearity we obtain tensors. In the
coordinate basis a (q,r) tensor T is T = T µ1...µq

ν1...νr ∂µ1 ⊗ . . .∂µq ⊗dxν1 ⊗ . . .dxνr .
Differential forms of higher rank can be defined by exterior multiplication of 1-forms. Exterior

or wedge product of two 1-forms is a 2-form: the space of 2-forms is linear, so the exterior product
can be defined by linearity and by the action in the basis:

dxµ ∧dxν = Pµν
ρσ dxρ ⊗dxσ =

1
2
(dxµdxν −dxνdxµ), (2.2)

where Pµν
ρσ = 1

2(δ µ

ρ δ ν
σ − δ

µ

σ δ ν
ρ ). In the following we will often omit the sign ∧, writing for

instance dxµdxν = −dxνdxµ . In analogy, the space of r-forms, r ≤ n, is a linear space with a
basis consisting of totally antisymmetric products of dxµ . There is only one linearly independent
form of the highest rank n which is called the volume form. Exterior algebra is the linear space of
differential forms of arbitrary rank, including functions which are 0-forms.

Exterior derivative is a linear mapping d : r-forms → (r +1)-forms defined as

dω =
1
r!

∂νωµ1...µr dxνdxν1 . . .dxνr . (2.3)

In particular, d f = (∂µ f )dxµ . One can show that d2 = 0, and that the differential obeys the Leibniz
rule, d( f h) = d f h+ f dh.

In order to define the length of vectors and to compare vector and tensor fields at different
points of the manifold one introduces additional structures. The length is defined by the metric g
which is a (0,2) tensor field, g : vector ⊗ vector → function; in the coordinate basis, g(∂ρ ⊗∂σ ) =
gρσ . The metric is bilinear, which means that when we multiply a vector by a number (possibly
different at different points), its length is multiplied by the same factor, g( f ∂ρ ⊗ ∂σ ) = f gρσ and
g(∂ρ ⊗ f ∂σ ) = f gρσ . One can also define the inverse metric, g(dxµ ⊗dxν) = gµν , gµρgρν = δ

µ

ν .
In the common notation metric is written as the line element, ds2 = gµνdxµdxν , where now of
course the product dxµdxν is not the exterior product.

Assume that we have a vector field Y given on M . To differentiate it along a curve c(t) we have
first to ‘translate’ Y from point c(t +dt) to c(t) and then to subtract the correspoding values. Affine
connection or covariant derivative ∇ is a mapping which paralelly transports a vector field Y along
the curve c(t) (defined by its tangent X), to another vector field ∇XY . Since the connection maps
∇: vector × vector → vector, it is a 1-form. In the coordinate basis we have ∇XY = X µ ( ∂Y λ

∂xµ +

Y νΓλ
µν)∂λ , in components, ∇µY λ = ∂Y λ

∂xµ +Γλ
µνY ν . The covariant derivative can be extended to

all tensor fields, for example for the metric we have ∇νgλ µ = ∂νgλ µ −Γρ
νλ gρµ −Γρ

νµgλρ . If the
last expression is zero, we say that the connection is compatible with the metric.
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2.2 Cartan moving frames

Physical quantities (fields) are scalars, vectors, forms, etc., and their components are defined
by the choice of basis in tangent and cotangent spaces. But physics is insensitive to the change of
basis, and certainly more natural than the coordinate bases ∂µ and dxµ (which are of mathematical
convenience) is the basis in which spacetime is locally flat. It is called the Cartan moving frame or
vielbein, or tetrad in four dimensions. In tangent space basis vectors are denoted by eα = eµ

α ∂µ . If
we choose the basis to be locally orthonormal then

g(eα ⊗ eβ ) = ηαβ = eµ

α eν

β
gµν , (2.4)

where ηαβ is the constant Minkowski metric. The 1-forms dual to eα are θ α : θ α(eβ ) = δ α

β
. In

components, θ α = θ α
µ dxµ and θ α

µ eµ

β
= δ α

β
. Thus the line element is written as

ds2 = ηαβ θ
α

θ
β (2.5)

and gµν = θ α
µ θ

β

ν ηαβ . The fact that the moving frame depends on the point

dθ
α = (dθ

α
µ )dxµ =−1

2
Cα

βγθ
β

θ
γ 6= 0 (2.6)

indicates that the space is curved. As all other 1-forms, θ α anticommute.
The simplest example is the moving frame of the Minkowski space, ds2 = −dt2 + (dxi)2,

i = 1,2,3. It is given by
θ

0 = dt, θ
a = δ

a
i dxi. (2.7)

Obviously from d2 = 0 we see that dθ a = 0 and the space is flat. Of course we can write the line
element in polar coordinates too: ds2 =−(θ 0)2 +(θ 1)2 +(θ 2)2 +(θ 3)2 , and then

θ
0 = dt, θ

1 = dr, θ
2 = r dθ , θ

3 = r sinθ dϕ. (2.8)

The latter is a special case of the Schwarzschild frame for m = 0,

θ
0 =

√
1− 2m

r
dt, θ

1 =
1√

1− 2m
r

dr, θ
2 = r dθ , θ

3 = r sinθ dϕ. (2.9)

For de Sitter space, if we choose the coordinates such that ds2 = −dt2 + e2αt(dxi)2, the moving
frame is given by

θ
0 = dt, θ

a = eαt
δ

a
i dxi. (2.10)

The connection 1-form can of course also be expanded in the moving frame basis, ωα
β =

ωα
γβ θ γ , and the condition that it is compatible with metric is its antisymmetry ωαβ = −ωβα .

The frame and the connection define the torsion T α = 1
2 T α

βγθ β θ γ and the curvature Ωα
β =

1
2 Rα

βγδ θ γθ δ through the Cartan structure equations

T α = dθ
α +ω

α
β θ

β , Ω
α

β = dω
α

β +ω
α

γω
γ

β . (2.11)

If the space is torsion-free, the connection is related in a simple way to the Ricci rotation coefficients
Cα

βγ : ωαβγ = 1
2(Cαβγ −Cβγα +Cγαβ ) .

4
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Geometry of spacetime, that is kinematics of gravity is described by the vielbein and the
connection which give the metric, curvature and torsion. In order to speak of dynamics of matter
on a given space we need the action for the matter fields and the corresponding variational principle:
that is, besides the differential we need the integration. The integral on a manifold is also defined
basically on Rn, except that one has to be careful to use the invariant volume element given by the
volume form Θ,

Θ =
√
|g|dx1 . . .dxn = θ

1 . . .θ n. (2.12)

Physical fields which we typically have are scalars φ , spinors ψ and gauge fields A. The vector
potential A is a connection in the gauge group and a 1-form, A = Aµdxµ = Aαθ α ; the correspond-
ing field strength is a 2-form, F = dA + A2 = 1

2 Fαβ θ αθ β . It is perhaps instructive to write its
components in the frame basis: Fαβ = e[αAβ ]−AγCγ

αβ +[Aα ,Aβ ].

3. Noncommutative geometry

3.1 Noncommutative space

We now wish to generalize the structure just described to the case when the spacetime is a
noncommutative algebra A . We assume that A is generated by elements (operators, matrices)
xµ , coordinates1; of course we cannot map A → Rn now. It is even nontrivial to determine ‘di-
mensionality’ because we do not consider A as a linear space but as an algebra. A manifold is
usually defined by a rule which its coordinates satisfy (‘the set of all points that...’); likewise, a
noncommutative space is defined by commutation relations

[xµ ,xν ] = iJµν(x). (3.1)

By definition we have the basic algebraic structure of functions f (xµ) on A . We can therefore
define vector fields or derivations as before: as mappings X : functions → functions which satisfy
the Leibniz rule, X( f h) = (X f )h + f (Xh). However the lack of commutativity implies that the
space of derivations is not linear, that is, a product of function g with vector field X is not a vector
field anymore because the Leibniz rule does not hold,

gX( f h) 6= gX( f )h+ f gX(h) (3.2)

as g f 6= f g. Similarly, Xg is not a vector field either. An important kind of derivations on noncom-
mutative spaces are inner derivations defined as commutators with the elements of the algebra,

X f = [p, f ]; (3.3)

they are derivations because [p, f h] = [p, f ]h+ f [p,h]. One can notice two things: first, in the case
of commutative manifolds partial derivatives ∂µ do not belong to M , they are ‘outer derivations’.
The opposite situation, when all vector fields are inner is also possible: on a space generated by
finite matrices all derivations are inner.

1We do not distinguish the noncommuting objects by special notation like x̂µ .
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Since the set of vector fields is not closed under multiplication with functions one preferably
uses the dual space of 1-forms which is a linear space. Naturally no rule of multiplication remains
the same as in the commutative case, and in general we have for two 1-forms χ and ω we have

f ω 6= ω f , χ ∧ω 6=−ω ∧χ. (3.4)

Next we need the differential calculus. One can define a differential d as a linear mapping
d: r-forms → (r +1)-forms which obeys additional requirements of associativity, Leibniz rule and
d2 = 0. Differential should also preserve constraints in the algebra, that is

d[xµ ,xν ] = [dxµ ,xν ]+ [xµ ,dxν ] = ik̄ dJµν . (3.5)

For example for constant noncommutativity

[xµ ,xν ] = ik̄Jµν = const (3.6)

it is consistent to assume that
[dxµ ,xν ] = 0 (3.7)

because differential of a constant is zero. The last relation fully defines the calculus on the corre-
sponding noncommutative space (which as we shall see shortly is not the only one consistent with
(3.6)). On the other hand if noncommutativity is of the Lie-algebra type,

[xµ ,xν ] = i f µν
ρxρ , (3.8)

f µν
ρ =const, it is easy to see that the choice (3.7) is inconsistent with (3.8). In general for a fixed

set of commutation relations (a fixed noncommutative space), differential is not given uniquely
and consequently the multiplication rules in the exterior algebra are in principle a subject of an
additional (though not completely independent) definition. The question then is, how to choose
the differential? Should one go from example to example, or attempt to define some kind of a
‘canonical’ calculus, significant for physics for example, or for gravity?

3.2 Noncommutative frames

One possibility is to suppose that the calculus is flat locally and the same as one which we
defined for the Heisenberg algebra (3.6-3.7). The obstacle is, what is exactly the meaning of
‘locally’ in noncommutative geometry, what does it mean to get ‘close’ to a point (of the spectrum?)
and expand? In order to do that, we should know representations of a given noncommutative space.

Proposal given in [3] is based on the two main ideas: to adapt the differential calculus to
general relativity and to keep linearity. The differential calculus is defined in close analogy to the
Cartan moving frame formalism. Moving frames have special role in gravity because they give
a basis in which the equivalence principle is realized. In noncommutative geometry this role is
extended: we assume that commutators between functions and the frame 1-forms θ α vanish,

[ f ,θ α ] = 0 (3.9)

and this is the additional relation which we need to define the exterior algebra. Relation (3.9) has
of course to be consistent with (3.1); there are further consistency constraints, [6].

6



P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
1
0

Geometry of the Grosse-Wulkenhaar model Maja Burić

When we have frame 1-forms θ α we can determine dual derivations eα from θ α(eβ ) = δ α

β
.

The differential d is defined as

d f (eα) = eα f , d = θ
αeα . (3.10)

Definition (3.9) is motivated by the requirement that components of the metric are constant in
the frame basis, g(θ α ⊗ θ β ) = ηαβ . In fact, if we impose (left and right) linearity of the metric
g, requirement that components gαβ be constant (or in the center of the algebra) implies relation
(3.9). Now we can establish the analogy with the formulae from the usual differential geometry.
Differentiating coordinates, dxµ = (eαxµ)θ α , we get eµ

α = eαxµ ; by linearity of the metric then

g(dxµ ⊗dxν) = g(eµ

αθ
α ⊗ eν

β
θ

β ) = eµ

α eν

β
η

αβ = gµν . (3.11)

In comparison with the symplectic structure on commutative manifolds, there is a new pattern
in noncommutative geometry: one can identify in some cases the phase space with the position
space. This happens when derivations eα are inner, given by the momenta pα ∈A : eα f = [pα , f ] .
In particular, eµ

α = [pα ,xµ ] then.
As in commutative geometry, the affine connection can be chosen freely. The torsion and

the curvature are defined through the Cartan structure equations, but conditions of linearity and
hermiticity are stronger here and constrain the system nontrivially, [3].

4. Examples

4.1 Flat space, de Sitter space

The simplest example is the flat space: the basic commutators in the algebra are constant,

[xµ ,xν ] = ik̄Jµν = const (4.1)

and we assume usually that matrix Jµν is nondegenerate. If we take as momenta

pµ = (ik̄J)−1
µν xν (4.2)

we obtain eρ

µ = [pµ ,xρ ] = δ
ρ

µ and the frame is flat:

θ
α = δ

α
µ dxµ , gµν = eα

µ eβ

ν ηαβ = ηµν . (4.3)

From (3.9) we see that the exterior algebra is (3.7). We can notice further that the commutative
limit k̄ → 0 is singular as it means that the momenta tend to infinity: in fact, inner derivatives
become outer.

There are other possible choices of momenta which are consistent with commutator (4.1): let
us mention one in two dimensions. Consistently with [t,x] = ik̄ we can also set

p0 =
i
k̄

x, p1 =
i

α k̄
e−αt . (4.4)

The vielbein is
e0

0 = [p0, t] = 1, e1
1 = [p1,x] = e−αt , (4.5)

and the off-diagonal components are zero. This corresponds to the frame of de Sitter space (2.10).
From θ 0 = dt, θ 1 = e−αtdx we obtain that the only nonvanishing Ricci rotation coefficient is
C1

01 =−α = const: the space has constant curvature.

7
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4.2 Fuzzy sphere

Coordinates xm, m = 1,2,3 of the fuzzy sphere are proportional to generators Jm of the SU(2)
group in irreducible representation by n×n matrices,

[xm,xn] =
ik̄
r

ε
mn

p xp. (4.6)

For large r (and for large n) xm = k̄
r Jm approximately. This space is two-dimensional because

Casimir relation (Jm)2 = (n2−1)/4 can be interpreted as the condition that coordinates lay on the
sphere, (xm)2 = r2 .

What is the differential? We have seen already that, as we are in a Lie algebra, dxm is not a
frame. We can define θ a by the following choice of the momenta pa,

pa =
1
ik̄

δamxm. (4.7)

The corresponding vector fields ea are generators of the spherical symmetry,

[ea,eb] = Cc
abec, Cc

ab =
1
r

εcab. (4.8)

We obtain easily for the vielbein components em
a = [pa,xm] =−1

r εmab xb , that is

dxm =
1
r

εmnbxn
θ

b. (4.9)

There is a peculiar fact: we have three basis 1-forms and three basis derivations. From [xm,θ a] = 0
one can check for example that dxm xm = −xm dxm , which just means that the Casimir relation is
stable under differentiation, dxm xm +xm dxm = 0. To invert (4.9) and to find θ a

m we need to use the
special 1-form called the ‘Dirac operator’, −paθ a

−paθ
a =

i
k̄

xaθ
a =

r2

k̄2 xm dxm, (4.10)

and after some algebra we obtain

θ
a
m =

1
r

ε
am

c xc +
ik̄
r2 δ

am− i
k̄

xaxm. (4.11)

Therefore the coordinate components of the metric (assuming that it is euclidean, gab = δ ab), are

gmn = g(Cm
pa xp

θ
a⊗Cn

qbxq
θ

b) =
1
r2 (r2

δ
mn− 1

2
{xm,xn}− 1

2
[xm,xn]). (4.12)

The metric is, as are the tangent and cotangent spaces, three-dimensional. In the commutative limit
k̄ → 0 we recover the metric of the sphere, a two-dimensional object. Thus we see that though the
position algebra is two-dimensional, the form algebra is of one dimension higher: the sphere is,
also in this sense, fuzzy.

We shall see later that for the Lie-algebra noncommutativity it is consistent to assume that the
frame 1-forms anticommute, {θ a,θ b} = 0. Further we have that dθ a = −1

2Ca
bc θ bθ c , with Ca

bc

given by (4.8). If we define the connection so that the torsion vanish, ωacb = −1
2Cabc , we obtain

that the curvature is constant,

Ra
bcd =

1
4r2 (δ a

c δbd −δ
a
d δbc), R =

3
2r2 . (4.13)

8
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4.3 Quantum line

Quantum or q-euclidean spaces of dimension n are algebras generated by coordinates xi,
i = 1 . . .n , which satisfy a quadratic relation of the form

Pi j
lmxlxm = 0 (4.14)

and are covariant under the coaction of the quantum group SOq(n), [7]. We are interested in the
quantum line R1

q . In general Rn
q can be extended by an operator Λ which satisfies

xi
Λ = qΛxi, (4.15)

in our case xΛ = qΛx and x is hermitian, Λ unitary. When x and Λ are both unitary operators
(4.15) is the Weyl algebra; as noncommutative space it is called the fuzzy torus. In the special case
qn = 1, the Weyl algebra has a finite-dimensional representation

x =


1 0 0 . . .

0 q 0 . . .

0 0 q2 . . .

. . . . . .

. . . . . qn−1

 , Λ =


0 1 0 0 . .

0 0 1 0 . .

0 0 0 1 . .

. . . . . .

1 . . . . 0

 . (4.16)

On the quantum line parameter q is real and q > 1, but we can still represent the algebra on a
Hilbert space in a similar way, [8]

x|k〉= qk|k〉, Λ|k〉= |k +1〉; (4.17)

|k〉 is the infinite-dimensional version of the basis of (4.16). The explicit wave-function represen-
tation of (4.17), called the Bohr compactification of the real line, [9], is given by

〈λ |k〉= e−iλk, (4.18)

where 〈λ |k〉 is the momentum-space wave function which is obviously of the same form as the
Fourier transformation of the δ -function. This representation differs from the ordinary one in the
scalar product which is rescaled or ‘compactified’:

〈ψ|χ〉= lim
L→∞

1
2L

∫ L

−L
ψ
∗(λ )χ(λ )dλ . (4.19)

Therefore the basis |k〉 is properly normalized, 〈k|l〉 = δkl , for all k, l ∈ R. Instead of x we can
introduce coordinate y such that qy = x; then we have

y|k〉= k|k〉, Λ
−1yΛ = y+1. (4.20)

One differenial calculus on R1
q can be defined choosing the momentum to be p1 = q

1−q Λ .
Then

e1x = [p1,x] = qΛx, e1Λ = 0, e1y =
q

q−1
Λ. (4.21)

9
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The 1-form dual to e1 is θ 1 = Λ−1x−1dx. It is not straightforward to interpret R1
q with the differ-

ential d = θ 1e1 as a one-dimensional space because its metric depends on the phase-space variable
Λ, g11 = q3Λ2x2 ; we can either enlarge the space including Λ, or alter the calculus, for further
details see [8]. But this differential has very interesting action on functions f (y) in the eigenbasis
|k〉. If we define that θ 1 is on the space of states represented by identity, we obtain

d f (y)|k〉= e1 f (y)|k〉=
q

q−1
(

f (k +1)− f (k)
)
|k +1〉, (4.22)

so in this basis d acts as a finite-difference operator. The laplacian ∆ = e1e1 is then given by

∆ f (y)|k〉=
q2

(q−1)2

(
f (k +2)−2 f (k +1)+ f (k)

)
|k +2〉. (4.23)

We see also easily that for other choices like p′1 = (Λ)µ , where µ is a real number, we have
Λ−µyΛµ = y+ µ and therefore d f |k〉 ∼

(
f (k + µ)− f (k)

)
|k + µ〉.

The algebra R1
q and the calculus (4.22) are important in the loop quantum cosmology. Coordi-

nate y is in fact the variable p which describes the scale factor |p|= a2l2
0/4 and the volume V of the

universe, while Λµ correspond to the holonomies. The connection c, roughly equal to the logΛ, is
in fact not a well defined operator, much the same as it was not defined in the finite representation
(4.16). The gravitational part of the Hamiltonian constraint that is a part of the equations of motion
is written in terms of the laplacian ∆, [10, 11].

5. Truncated Heisenberg space

5.1 Exterior algebra

The guiding idea of the construction of the truncated Heisenberg algebra [12] was to obtain a
matrix approximation to the Heisenberg algebra (4.1). This can be achieved most naturally in the
harmonic oscillator representation, by truncation of infinite matrices which represent coordinate x
and momentum p (now, the second coordinate y) to finite n×n matrices

µx =
1√
2



0 1 0 . . .

1 0
√

2 . . .

0
√

2 0 . . .

. . . . . .

. . . . 0
√

n−1
. . . .

√
n−1 0


, µy =

i√
2



0 −1 0 . . .

1 0 −
√

2 . . .

0
√

2 0 . . .

. . . . . .

. . . . 0 −
√

n−1
. . . .

√
n−1 0


(5.1)

The third generator is needed to close the algebra; we take

µ
′z = n



0 0 0 . . .

0 0 0 . . .

0 0 0 . . .

. . . . . .

. . . . 0 0

. . . . 0 1


. (5.2)
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Then the truncated Heisenberg algebra is defined by the following quadratic relations

[µx,µy] = iε(1−µ
′z), [µx,µ

′z] = iε(µy µ
′z+ µ

′z µy), [µy,µ
′z] =−iε(µx µ

′z+ µ
′z µx). (5.3)

Constant ε in (5.3) is a dimensionless parameter introduced to generalize relations (5.1-5.2), and to
render at least formally the commutative limit. The µ and µ ′ have dimension of the inverse length
and they describe ‘magnitudes’ of the x-y and z directions respectively. Clearly for ε = 1 the algebra
reduces to the algebra of finite matrices, in other words the truncated Heisenberg algebra has finite-
dimensional representations for ε = 1. On the other hand, the Heisenberg algebra [x,y] = ik̄
(k̄ = εµ−2 ) is obtained as contraction µ ′ → 0 of (5.3); we refer to this contraction as to subspace
z = 0 of the truncated Heisenberg algebra.

What we wish to explore is the geometry of (5.3), that is its differential geometry. In the frame
formalism we can define differential by choosing momenta; however, not every choice leads to an
acceptable d, [3]. In particular, restriction d2 = 0 gives the constraint

[pα , pβ ] =
1
iε

Kαβ +Fγ
αβ pγ −2iεQγδ

αβ pγ pδ . (5.4)

Constants Kαβ , Fγ
αβ and Qγδ

αβ are called the structure coefficients. It turns out that Qγδ
αβ

determine also the exterior algebra. If we define the exterior multiplication of two frame 1-forms
by θ γθ δ = Pγδ

αβ θ α ⊗θ β , the consistency of the wedge product with the differential implies that

Pγδ
αβ =

1
2
(δ γ

αδ
δ

β
−δ

γ

β
δ

δ
α )+ iεQγδ

αβ . (5.5)

The last relation is a commutation rule, θ γθ δ + θ δ θ γ = 2iεQγδ
αβ θ αθ β , and we see that in the

case of quadratic algebras the frame 1-forms do not anticommute.
The truncated Heisenberg algebra is quadratic in its generators so the momenta can be intro-

duced as
ε p1 = iµ2y, ε p2 =−iµ2x, ε p3 = iµ(µz− 1

2
). (5.6)

For z = 0, p1 and p2 reduce to the flat-space momenta (4.2). The momentum algebra is

[p1, p2] =
µ2

2iε
+ µ p3, [p2, p3] = µ p1− iε(p1 p3 + p3 p1), [p3, p1] = µ p2− iε(p2 p3 + p3 p2) (5.7)

and we can identify the structure coefficients:

K12 =
µ2

2
, F1

23 = µ, Q13
23 =

1
2
, Q23

31 =
1
2
. (5.8)

As we have seen, exterior multiplication is completely given by Qγδ
αβ : we have

(θ 1)2 = 0, (θ 2)2 = 0, (θ 3)2 = 0, {θ
1,θ 2}= 0, (5.9)

{θ
1,θ 3}= iε(θ 2

θ
3−θ

3
θ

2), {θ
2,θ 3}= iε(θ 3

θ
1−θ

1
θ

3).

Due to quadratic terms in (5.4) 1-forms do not anticommute, but the linear space of 2-forms is
three-dimensional as in commutative geometry. We can extend the exterior algebra to 3-forms
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using associativity, [13]:

θ
1
θ

3
θ

1 = θ
2
θ

3
θ

2, θ
3
θ

1
θ

3 = 0, θ
3
θ

2
θ

3 = 0. (5.10)

θ
1
θ

2
θ

3 =−θ
2
θ

1
θ

3 = θ
3
θ

1
θ

2 =−θ
3
θ

2
θ

1 = i
ε2−1

2ε
θ

2
θ

3
θ

2,

θ
1
θ

3
θ

2 =−θ
2
θ

3
θ

1 = i
ε2 +1

2ε
θ

2
θ

3
θ

2.

Again, relations are unusual but perfectly consistent: they show that there is just one linearly
independent 3-form, which implies further that the volume is unambiguously defined. We choose

the volume form as Θ =− i
2ε

θ 2θ 3θ 2 .

5.2 Metric and connection

The metric structure of the space is completely fixed once the frame is defined. From the
vielbein eµ

α = [pα ,xµ ] we obtain the differentials dxµ = eµ

αθ α ,

dx = (1−µz)θ 1 + µ
2(yz+ zy)θ 3, (5.11)

dy = (1−µz)θ 2−µ
2(xz+ zx)θ 3,

dz = µ
2(xz+ zx)θ 1 + µ

2(yz+ zy)θ 2,

so the coordinate components of the metric gµν = eµ

αeν

β
gαβ are given by

gµν =


(1−µz)2 + µ4(yz+ zy)2 −µ4(yz+ zy)(xz+ zx) (1−µz)µ2(xz+ zx)

−µ4(xz+ zx)(yz+ zy) (1−µz)2 + µ4(xz+ zx)2 (1−µz)µ2(yz+ zy)

µ2(xz+ zx)(1−µz) µ2(yz+ zy)(1−µz) µ4(xz+ zx)2 + µ4(yz+ zy)2

 (5.12)

The metric is hermitian and reduces to diag(1,1,0) on the subspace z = 0 as it should. For the
Ricci rotation coefficients we find

C1
23 =−C1

32 = 2µ
2z, C2

31 =−C2
31 = 2µ

2z, C3
12 =−C3

21 = µ, (5.13)

C3
13 =−C3

31 = 2µ
2x, C3

23 =−C3
32 = 2µ

2y;

they are nonzero along the third direction even for z = 0, which means that this subspace has
extrinsic curvature. If we define the connection as ωαβγ = 1

2(Cαβγ −Cβγα +Cγαβ ), we have

ω12 =−ω21 = (−µ

2
+2iε p3)θ 3 = µ (

1
2
−2µz)θ 3, (5.14)

ω13 =−ω31 =
µ

2
θ

2 +2iε p2θ
3 =

µ

2
θ

2 +2µ
2xθ

3,

ω23 =−ω32 =−µ

2
θ

1−2iε p1θ
3 =−µ

2
θ

1 +2µ
2yθ

3.

This connection gives the torsion and the Riemann curvature by equations (2.11); both quan-
tities are quadratic in pα . From the Riemann curvature tensor we can calculate the Ricci curvature,
Rαβ = Rγ

αγβ , and the curvature scalar, R = ηαβ Rαβ . For R for we obtain

R =
11
4

µ
2−2µ

2(µz− 1
2
)−4µ

4(x2 + y2), (5.15)
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or on z = 0,

R =
15
4

µ
2−4µ

4(x2 + y2). (5.16)

5.3 Fields

Once we have the scalar curvature (5.16) it is not difficult to recognize the relation between
the Grosse-Wulkenhaar action [14]

S =
∫ 1

2
(1− Ω2

2
)∂µϕ ∂

µ
ϕ +

m2

2
ϕ

2 +
Ω2

2
x̃µ x̃µϕϕ +

λ

4!
ϕ

4 (5.17)

and the action for the scalar field on a curved space,

S′ =
∫ 1

2
(eαϕ)(eα

ϕ)+
M2

2
ϕ

2− ξ

2
Rϕ

2 +
Λ

4!
ϕ

4. (5.18)

Reducing the action (5.18) from three to two dimensions, to subspace z = 0, we have e1,2 = ∂1,2

and e3 = 0. Thus the action (5.18) becomes equal to (5.17) up to an overall rescaling S = κS′ and

1− Ω2

2
= κ, m2 = κ(M2−ξ a),

Ω2µ4

ε2 = κξ b, λ = κΛ, (5.19)

with a = 15µ2/2, b = 8µ4. Therefore we see that the Grosse-Wulkenhaar action describes in fact
a scalar field moving on a specific curved noncommutative background.

Similarly, performing the dimensional reduction in the Yang-Mills action for the U(1) gauge
field we obtain a Kaluza-Klein model. As the truncated Heisenberg space is curved, the gauge field
couples to the connection (in the frame basis). In the noncommutative setting the formula for the
components of the field strength generalizes to

Fζ η = e[ζ Aη ]−AαCα
ζ η +[Aζ ,Aη ]+2iε(eβ Aγ)Qβγ

ζ η +2iεAβ AγQβγ
ζ η (5.20)

so again we have an explicit dependence on coordinates in the action, in accordance with (5.13).
Reducing to z = 0 the third component of the gauge potential becomes a scalar field, A3 = φ ,
while the field strength becomes

F12 = F12−µφ , F13 = D1φ − iε{p2 +A2,φ}, F23 = D2φ + iε{p1 +A1,φ}, (5.21)

where F12 = e1A2 − e2A1 + [A1,A2]. After the insertion of Fαβ into the Yang-Mills action we
obtain, [13]

SY M =
1
2

∫
((1− ε

2)(F12)2−2(1− ε
2)µF12φ +(5− ε

2)µ
2
φ

2 +4iεF12φ
2

+(D1φ)2 +(D2φ)2− ε
2{p1 +A1,φ}2− ε

2{p2 +A2,φ}2).

This is the action for noncommutative U(1) Kaluza-Klein theory obtained by dimensional reduction
from the truncated Heisenberg space to the Heisenberg algebra. It is indeed a challenging task to
understand details of the classical dynamics and quantization of this model.
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6. Conclusions

We defined in this lecture, more in an intuitive than in a precise way, a noncommutative gen-
eralization of the Cartan moving frame formalism, and we described geometries of some noncom-
mutative spaces which found applications in physics. The simplest of them and the most frequently
used is the Moyal or flat noncommutative space (4.1). Dynamics of fields on the fuzzy sphere (4.6)
and various aspects of its geometry have been also understood in many details, while the quantum
euclidean spaces (4.14) and quantum groups became a classical subject already in the nineties. We
here put the emphasis on geometry of the truncated Heisenberg algebra as it nontrivially embodies
many specific properties of noncommutative models. And of course because it gives an interesting
geometric interpretation of the Grosse-Wulkenhaar model.

Although at the moment the noncommutative frame formalism does not give one preferred
model or description of noncommutative geometry, it certainly opens new possibilities and intro-
duces new kinds of behavior in geometry and in subsequent physics. One of its characteristic
aspects is the capacity to define geometry of the matrix spaces, to give them a notion of smooth-
ness. Spaces of matrices are potentially very interesting as, unlike lattice discretizations, they
allow representations of symmetries; furthermore being finite they in principle provide with finite
or renormalizable field theories (defined either directly or as a limit). In such geometries the phase
space and the position space are identified, which is a new feature too. One could even conjecture
that, because of the mathematical minimality of such models, they are preferred by the formalism.
But we have seen on the other hand that there are important examples in which the representation
space is infinite and the momenta remain ‘outside’: the corresponding models are neither minimal
nor simple. Thus it is very important to investigate and understand this kind of structures, and in
particular to find out whether they can support physically relevant geometries as for example non-
commutative versions of the Schwarzschild or FRW spaces. But as we have seen, this task is far
from being straightforward.

References

[1] H. Steinacker, contribution to this issue of PoS

[2] P. Aschieri, M. Dimitrijevic, F. Meyer and J. Wess, Class. Quant. Grav. 23, 1883 (2006)
[arXiv:hep-th/0510059].

[3] J. Madore, An Introduction to Noncommutative Differential Geometry and its Physical Applications.
No. 257 in London Mathematical Society Lecture Note Series. Cambridge University Press,
second ed., 2000. 2nd revised printing.

[4] S. W. Hawking, G. F. R. Ellis, The Large scale structure of space-time, Cambridge University Press,
Cambridge, 1973.

[5] M. Nakahara, Geometry, topology and physics, Boca Raton, USA: Taylor & Francis, 2003.

[6] M. Buric, T. Grammatikopoulos, J. Madore and G. Zoupanos, JHEP 0604, 054 (2006)
[arXiv:hep-th/0603044].

[7] L. D. Faddeev, N. Y. .Reshetikhin, L. A. Takhtajan, Leningrad Math. J. 1, 193-225 (1990).

[8] B. L. Cerchiai, R. Hinterding, J. Madore, J. Wess, Eur. J. Phys. C8, 533 (1999). [math/9807123
[math-qa]].

14



P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
1
0

Geometry of the Grosse-Wulkenhaar model Maja Burić
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